Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find neural compensation in people with Alzheimer's-related protein

15.09.2014

Findings could help explain how some people stave off dementia

The human brain is capable of a neural workaround that compensates for the buildup of beta-amyloid, a destructive protein associated with Alzheimer's disease, according to a new study led by researchers at the University of California, Berkeley.


Shown are fMRI scans across all subjects in the study. The yellow and red areas in Section A represent parts of the brain that are activated while subjects are forming 'gist memories' of pictures viewed. Section B represents areas of increased activation, shown in yellow and red, as detailed memories are being formed.

Credit: Image courtesy of Jagust Lab

The findings, to be published Sunday, Sept. 14, in the journal Nature Neuroscience, could help explain how some older adults with beta-amyloid deposits in their brain retain normal cognitive function while others develop dementia.

"This study provides evidence that there is plasticity or compensation ability in the aging brain that appears to be beneficial, even in the face of beta-amyloid accumulation," said study principal investigator Dr. William Jagust, a professor with joint appointments at UC Berkeley's Helen Wills Neuroscience Institute, the School of Public Health and Lawrence Berkeley National Laboratory.

Previous studies have shown a link between increased brain activity and beta-amyloid deposits, but it was unclear whether the activity was tied to better mental performance.

The study included 22 healthy young adults and 49 older adults who had no signs of mental decline. Brain scans showed that 16 of the older subjects had beta-amyloid deposits, while the remaining 55 adults did not.

The researchers used functional magnetic resonance imaging (fMRI) to track the brain activity of subjects in the process of memorizing pictures of various scenes. Afterwards, the researchers tested the subjects' "gist memory" by asking them to confirm whether a written description of a scene – such as a boy doing a handstand – corresponded to a picture previously viewed. Subjects were then asked to confirm whether specific written details of a scene – such as the color of the boy's shirt – were true.

"Generally, the groups performed equally well in the tasks, but it turned out that for people with beta-amyloid deposits in the brain, the more detailed and complex their memory, the more brain activity there was," said Jagust. "It seems that their brain has found a way to compensate for the presence of the proteins associated with Alzheimer's."

What remains unclear, said Jagust, is why some people with beta-amyloid deposits are better at using different parts of their brain than others. Previous studies suggest that people who engage in mentally stimulating activities throughout their lives have lower levels of beta-amyloid.

"I think it's very possible that people who spend a lifetime involved in cognitively stimulating activity have brains that are better able to adapt to potential damage," said Jagust.

###

Co-lead authors of the study are Jeremy Elman and Hwamee Oh, both of whom were postdoctoral researchers in Jagust's lab.

The National Institute on Aging and the McKnight Foundation helped support this research.

Sarah Yang | Eurek Alert!
Further information:
http://www.berkeley.edu/index.html

Further reports about: Alzheimer's McKnight Neuroscience Previous activity compensation deposits evidence findings neural scans

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>