Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find neural compensation in people with Alzheimer's-related protein

15.09.2014

Findings could help explain how some people stave off dementia

The human brain is capable of a neural workaround that compensates for the buildup of beta-amyloid, a destructive protein associated with Alzheimer's disease, according to a new study led by researchers at the University of California, Berkeley.


Shown are fMRI scans across all subjects in the study. The yellow and red areas in Section A represent parts of the brain that are activated while subjects are forming 'gist memories' of pictures viewed. Section B represents areas of increased activation, shown in yellow and red, as detailed memories are being formed.

Credit: Image courtesy of Jagust Lab

The findings, to be published Sunday, Sept. 14, in the journal Nature Neuroscience, could help explain how some older adults with beta-amyloid deposits in their brain retain normal cognitive function while others develop dementia.

"This study provides evidence that there is plasticity or compensation ability in the aging brain that appears to be beneficial, even in the face of beta-amyloid accumulation," said study principal investigator Dr. William Jagust, a professor with joint appointments at UC Berkeley's Helen Wills Neuroscience Institute, the School of Public Health and Lawrence Berkeley National Laboratory.

Previous studies have shown a link between increased brain activity and beta-amyloid deposits, but it was unclear whether the activity was tied to better mental performance.

The study included 22 healthy young adults and 49 older adults who had no signs of mental decline. Brain scans showed that 16 of the older subjects had beta-amyloid deposits, while the remaining 55 adults did not.

The researchers used functional magnetic resonance imaging (fMRI) to track the brain activity of subjects in the process of memorizing pictures of various scenes. Afterwards, the researchers tested the subjects' "gist memory" by asking them to confirm whether a written description of a scene – such as a boy doing a handstand – corresponded to a picture previously viewed. Subjects were then asked to confirm whether specific written details of a scene – such as the color of the boy's shirt – were true.

"Generally, the groups performed equally well in the tasks, but it turned out that for people with beta-amyloid deposits in the brain, the more detailed and complex their memory, the more brain activity there was," said Jagust. "It seems that their brain has found a way to compensate for the presence of the proteins associated with Alzheimer's."

What remains unclear, said Jagust, is why some people with beta-amyloid deposits are better at using different parts of their brain than others. Previous studies suggest that people who engage in mentally stimulating activities throughout their lives have lower levels of beta-amyloid.

"I think it's very possible that people who spend a lifetime involved in cognitively stimulating activity have brains that are better able to adapt to potential damage," said Jagust.

###

Co-lead authors of the study are Jeremy Elman and Hwamee Oh, both of whom were postdoctoral researchers in Jagust's lab.

The National Institute on Aging and the McKnight Foundation helped support this research.

Sarah Yang | Eurek Alert!
Further information:
http://www.berkeley.edu/index.html

Further reports about: Alzheimer's McKnight Neuroscience Previous activity compensation deposits evidence findings neural scans

More articles from Health and Medicine:

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

nachricht Improving memory with magnets
28.03.2017 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>