Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find neural compensation in people with Alzheimer's-related protein

15.09.2014

Findings could help explain how some people stave off dementia

The human brain is capable of a neural workaround that compensates for the buildup of beta-amyloid, a destructive protein associated with Alzheimer's disease, according to a new study led by researchers at the University of California, Berkeley.


Shown are fMRI scans across all subjects in the study. The yellow and red areas in Section A represent parts of the brain that are activated while subjects are forming 'gist memories' of pictures viewed. Section B represents areas of increased activation, shown in yellow and red, as detailed memories are being formed.

Credit: Image courtesy of Jagust Lab

The findings, to be published Sunday, Sept. 14, in the journal Nature Neuroscience, could help explain how some older adults with beta-amyloid deposits in their brain retain normal cognitive function while others develop dementia.

"This study provides evidence that there is plasticity or compensation ability in the aging brain that appears to be beneficial, even in the face of beta-amyloid accumulation," said study principal investigator Dr. William Jagust, a professor with joint appointments at UC Berkeley's Helen Wills Neuroscience Institute, the School of Public Health and Lawrence Berkeley National Laboratory.

Previous studies have shown a link between increased brain activity and beta-amyloid deposits, but it was unclear whether the activity was tied to better mental performance.

The study included 22 healthy young adults and 49 older adults who had no signs of mental decline. Brain scans showed that 16 of the older subjects had beta-amyloid deposits, while the remaining 55 adults did not.

The researchers used functional magnetic resonance imaging (fMRI) to track the brain activity of subjects in the process of memorizing pictures of various scenes. Afterwards, the researchers tested the subjects' "gist memory" by asking them to confirm whether a written description of a scene – such as a boy doing a handstand – corresponded to a picture previously viewed. Subjects were then asked to confirm whether specific written details of a scene – such as the color of the boy's shirt – were true.

"Generally, the groups performed equally well in the tasks, but it turned out that for people with beta-amyloid deposits in the brain, the more detailed and complex their memory, the more brain activity there was," said Jagust. "It seems that their brain has found a way to compensate for the presence of the proteins associated with Alzheimer's."

What remains unclear, said Jagust, is why some people with beta-amyloid deposits are better at using different parts of their brain than others. Previous studies suggest that people who engage in mentally stimulating activities throughout their lives have lower levels of beta-amyloid.

"I think it's very possible that people who spend a lifetime involved in cognitively stimulating activity have brains that are better able to adapt to potential damage," said Jagust.

###

Co-lead authors of the study are Jeremy Elman and Hwamee Oh, both of whom were postdoctoral researchers in Jagust's lab.

The National Institute on Aging and the McKnight Foundation helped support this research.

Sarah Yang | Eurek Alert!
Further information:
http://www.berkeley.edu/index.html

Further reports about: Alzheimer's McKnight Neuroscience Previous activity compensation deposits evidence findings neural scans

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>