Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover weak link in Alzheimer's drug candidates

02.04.2010
Some current therapies being investigated for Alzheimer's disease may cause further neural degeneration and cell death, according to a breakthrough discovery by UC San Diego researchers.

By combining three dimensional computer simulations with high resolution atomic force microscopy membrane protein and cell imaging, electrical recording and various cellular assays, UCSD nano-biophysicist Ratnesh Lal and his colleagues investigated the structure and function of truncated peptides, known as nonamyloidgenic peptides, formed by some Alzheimer's drug candidates.

The researchers found that the nonamyloidgenic peptides formed active ion channels that caused the cells to take in very high levels of calcium ions, which damaged synaptic efficiency and eventually killed neurons, neurons that are linked to memory loss in human brain.

As a result of their current findings and related previous work, Lal and his colleagues believe that aggregate-forming amyloidogenic peptides promote neurological diseases by forming holes or channels in cell membranes, disturbing ionic homeostasis by allowing unwanted ion flow in-and-out of cells, and most importantly allowing toxic amounts of calcium ions into neural cells. Truncated, shorter non-amyloidogenic peptide fragments that also form ion channels and alter neuronal viability, are assumed by biomedical researchers to be non-toxic and are currently targeted to treat Alzheimer's disease patients. Details of their research were recently published in a paper entitled “Truncated â-amyloid peptide channels provide an alternative mechanism for Alzheimer's Disease and Down syndrome” in the Proceedings of the National Academy of Sciences.

“There are several drugs to treat Alzheimer’s in Trials I and II, but we don't
believe that they will be adopted for clinical usage,” said Lal, a joint professor in the UCSD Jacobs School of Engineering’s Department of Mechanical and Aerospace Engineering and Bioengineering. We believe we are providing the most direct mechanism of Alzheimer’s disease and Down Syndrome pathology. Through our research we have provided a structure and mechanism (an ion channel) that can account for the pathology. The strategy to control the activity of this structure – the opening and closing of the channel – should be targeted for an effective treatment.”

Lal and his colleagues are now working on a 3D structural model of the ion channel using their data to identify the domains (or sites) of the channel for designing effective therapeutics. Lal said the use of advanced nanotechnology and biology combined with a multi disciplinary approach, aided in the researchers’ breakthrough discovery.

“Without advances in technology and a multi disciplinary approach this kind of complex research would not move forward,” said Lal, a trained physicist and neurobiologist who joined the UCSD faculty in January 2010 from the University of Chicago.

"My goal is to provide practical solutions for effective human health management using advances in nanoscience and technology with a multidisciplinary and multi-scale (nano-to-translational) integrated approach,” he added.

Andrea Siedsma | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>