Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Light-Treatment Device to Improve Sleep Quality in the Elderly

02.06.2009
Sleep disturbances increase as we age. Some studies report more than half of seniors 65 years of age or older suffer from chronic sleep disturbances.

Researchers have long believed that the sleep disturbances common among the elderly often result from a disruption of the body’s circadian rhythms—biological cycles that repeat approximately every 24 hours.

In recent years, scientists at Rensselaer Polytechnic Institute’s Lighting Research Center and elsewhere have demonstrated that blue light is the most effective at stimulating the circadian system when combined with the appropriate light intensity, spatial distribution, timing, and duration. A team at the Lighting Research Center (LRC) has tested a goggle-like device designed to deliver blue light directly to the eyes to improve sleep quality in older adults.

“Light and dark patterns are the major synchronizer of circadian rhythms to the 24-hour solar day,” said Mariana Figueiro, Ph.D., Lighting Research Center Light and Health Program director and principal investigator on the project. “Light stimulus travels through the retina, the light-sensitive nerve tissue lining the back wall of the eye, to reach the master clock in the brain. However, a combination of age-related changes in the eye and a more sedentary lifestyle may reduce the amount of light stimulus reaching an older person’s retina, therefore reducing the amount of light for the circadian system.”

As we age, the lens in the eye thickens and the pupil shrinks, reducing the amount of light passing through to the retina. Making matters worse, in some cases, such as with persons with Alzheimer’s disease, the circadian system may require a stronger light stimulus due to deteriorating neural processes in the brain. These physical and neural changes can lead to muted signals to the circadian system. Factor in environmental influences, such as an indoor lifestyle with less access to daylight, and you have a perfect scenario for the development of irregular sleep-activity patterns, according to Figueiro.

The research team explains that a marked increase in daytime lighting levels can counteract the age-dependent losses in retinal light exposure by providing a stronger signal to the circadian system. However, the color and intensity of commercially available lighting systems, like those used in senior residences, assisted-living facilities, and nursing homes, are designed for visual effectiveness and minimal energy use and not necessarily efficacious for generating light to stimulate the older circadian system.

Commercially-available “white” light sources advertised to treat circadian-related sleep disorders are usually very bright light and can cause glare and compromise compliance.

In this project, the light-treatment prototype tested by Figueiro’s team was developed by Topbulb.com, LLC, based on prior LRC light and health research. The device offers an alternative approach using specially designed goggles that deliver blue light spectrally tuned for optimum circadian response.

“The goal of this phase of the development project was to create a device in a smaller form factor or envelope that allowed for social inclusion and end-user mobility, while still delivering the required dose of light,” said Topbulb.com Senior Developer Philip H. Bonello, Ph.D.

The device was worn by eleven subjects between the ages of 51 and 80 years of age. Each subject was exposed to two levels of blue light (about 50 lux and 10 lux) from the personal light-treatment device for 90 minutes on two separate nights. Blood and saliva samples were collected at prescribed times to assess levels of nocturnal melatonin, a hormone used as a marker for the circadian clock, with high levels at night when a person is in a dark environment and low levels during the day.

After only one hour of light exposure, the light-induced nocturnal melatonin suppression level was about 35 percent for the low light level and about 60 percent for the high light level. In addition, the higher level of blue light suppressed nocturnal melatonin more quickly, to a greater extent over the course of the 90-minute exposure period, and was maintained after 60 minutes.

Having demonstrated its stimulation effect on the circadian system, the researchers believe the device could be subsequently used to increase sleep consolidation and efficiency in older subjects when worn for a prescribed duration at an appropriate time.

“The study suggests that the light goggles might be a practical, comfortable, and effective way to deliver light treatment to those suffering from circadian sleep disorders. The next steps are to conduct field studies where we will be testing the effectiveness of this personal light-treatment device on those suffering from circadian-related sleep disorders, while also verifying the acceptance of the a device among the test groups,” said Figueiro.

Figueiro carried out her research with LRC scientists Andrew Bierman, John Bullough, Ph.D., and Mark Rea, Ph.D. They co-authored a paper detailing the study, “A Personal Light-Treatment Device for Improving Sleep Quality in the Elderly: Dynamics of Nocturnal Melatonin Suppression at Two Exposure Levels,” which was recently published in Chronobiology International, Volume 26 Issue 4, 726.

This study was supported by the National Institute on Aging (1R41AG029693) through a Small Business Technology Transfer grant to Topbulb.com, LLC, a commercial and residential resource for light bulbs.

About the Lighting Research Center
The Lighting Research Center (LRC) is part of Rensselaer Polytechnic Institute of Troy, N.Y., and is the leading university-based research center devoted to lighting. The LRC offers the world's premier graduate education in lighting, including one- and two-year master's programs and a Ph.D. program. Since 1988 the LRC has built an international reputation as a reliable source for objective information about lighting technologies, applications, and products. The LRC also provides training programs for government agencies, utilities, contractors, lighting designers, and other lighting professionals.

Mary Cimo | Newswise Science News
Further information:
http://www.lrc.rpi.edu
http://www.rpi.edu

More articles from Health and Medicine:

nachricht 'Icebreaker' protein opens genome for t cell development, Penn researchers find
21.02.2018 | University of Pennsylvania School of Medicine

nachricht Similarities found in cancer initiation in kidney, liver, stomach, pancreas
21.02.2018 | Washington University School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>