Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals how blood flow force protects blood vessels

29.01.2010
It is second nature for most of us that exercise protects against heart attack and stroke, but researchers have spent 30 years unraveling the biochemistry behind the idea. One answer first offered by researchers at the University of Rochester Medical Center is that athletic hearts push blood through arteries with greater force, which alone triggers reactions that protect against dangerous clogs in blood vessels.

In the latest study out of Rochester, published recently in the journal Blood, researchers demonstrated that they are very close to understanding every step in one flow-sensitive chain reaction that protects arteries. Each step provides an opportunity to mimic with drugs the proven ability of fast, steady blood flow to open up blood vessels and avert the inflammation and blood clots that come with atherosclerosis.

Past research at the Medical Center and elsewhere had determined that two genes, Krüppel-like factor 2 (KLF2) and endothelial nitric oxide synthase (eNOS), are turned on by blood flow force to reverse atherosclerosis, but not how. The current study found for the first time that flow causes a structural change in the enzyme histone deacetylase 5 (HDAC5), which in turn influences whether the two key genes are turned on.

"Obviously we should all be exercising to get our hearts pumping fast, which increases blood flow force through our vessels with all of these molecular benefits," said Zheng-Gen Jin, Ph.D., associate professor of Medicine within the Aab Cardiovascular Research Institute (CVRI) at the University of Rochester Medical Center, and corresponding author for the study. "Beyond that, the designers of future therapies may manipulate HDAC5 to fine-tune the action of protective genes."

Forcing It

The current study revolves around a signaling process called phosphorylation, in which enzymes called kinases attach a set of molecules called a phosphate group to a target to switch life processes on or off. In cells lining blood vessels (endothelial cells), the attachment of a phosphate group to an HDAC5 kicks it out of the cell's nucleus, perhaps by hiding a label that says it belongs there.

To study whether blood flow force represents one the signals that cause HDAC5 nuclear export, the team designed a virus to invade the cells and swap out the key building blocks that make possible its phosphorylation via blood flow force. Weiye Wang, also a member of the CVRI and first author of the paper, designed the virus. He also attached a fluorescent tag to HDAC5 in the mutated cells so the team could track it as it moved.

What the team found for the first time is that blood flow force (also called sheer stress) does indeed cause the phoshorylation, and export from the nucleus, of HDAC5 in endothelial cells. Importantly, the team also found that flow, by removing HDAC5 from the scene, forces it to break away from the molecule it usually attaches to in the nucleus: myocyte enhancer factor-2 (MEF2).

When free, MEF2 is known to drive the expression of Krüppel-like factor 2, which calls for increases in the supply of endothelial nitric oxide synthase (eNOS). eNOS then builds more of the nitric oxide that tells muscles surrounding arteries to relax, which increases blood flow and lowers blood pressure. When cells were engineered with HDAC5 incapable of being phosphorylated by flow, HDAC5 never left the nucleus, remained stuck to MEF2 and completely blocked the expression of KLF2 and eNOS.

Furthermore, taking away the ability of fast, steady flow to phosphorylate HDAC5 greatly weakened a second lifesaving benefit of flow: it prevents white blood cells from sticking to the cells lining blood vessels, an early, necessary step in the development of atherosclerosis. Fatty diets cause cholesterol deposits to build up within arterial walls, deposits that white blood cells "see" as infections and home in on to drive inflammatory disease. By increasing KLF2 expression, blood flow force is believed to prevent adhesion molecules on cells lining arteries from snagging white blood cells as they float by.

The team also showed through a series of experiments that flow-induced HDAC5 phosphorylation depends on the well known calcium/calmodulin pathway. The team theorizes that the force of flow changes the shape of calcium channels on the surface of endothelial cells, which enables calcium to rush into the cells and turn on calmodulin, which attaches to an as yet unidentified kinase that phosphorylates HDAC5.

Identifying such an enzyme would complete the first diagram of a flow-sensitive, protective signaling pathway. Jin's lab has zeroed in on calmodulin-dependent kinases as likely suspects, and is designing experiments that will shut down the genes coding for them to see if that stops the phosphorylation of HDAC5 by flow. Should that be the case, the team will seek to screen for drug candidates that encourage the action of these enzymes.

Along with Jin and Wang, the effort was led at the Aab CVRI by Chang Hoon Ha, Bong Sook Jhun and Chelsea Wong. Mukesh Jain led a partnering effort at the Case Western Reserve University School of Medicine. Much of the early work in area was done in the labs of Bradford Berk, M.D., Ph.D., CEO of the University of Rochester Medical Center, and Jun-ichi Abe, M.D., Ph.D., associate professor within the Aab CVRI. Funding for the work of Jin's team came from the American Heart Association, the American Diabetes Association and the National Heart, Lung and Blood Institute (NHLBI), part of the National Institutes of Health. The article was published online on Dec. 30, 2009.

"If we could free MEF2 from HDAC5 with a drug, we could mimic flow force to enhance KLF2 and eNOS expression and reverse inflammation in vessel walls," Jin said. "That promises to be extremely useful, and potentially to stave off disease underway in the blood vessels of humans."

Greg Williams | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>