Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Identifies Specific Bacteria Linked to Indoor Water-Damage and Mold

20.06.2012
Bacterial contamination in water-damaged buildings has been identified as a potential cause of health problems, including infection and respiratory conditions like asthma.

Which specific bacteria contribute to these problems, however, has been unknown—making it difficult for public health officials to develop tools to effectively address the underlying source of the problem.

In a new study, a University of Cincinnati (UC) environmental health research team found evidence linking two specific strains of bacteria— Stenotrophomonas and Mycobacterium—to indoor mold from water damage. The research is part of the U.S. Department of Housing and Urban Development’s investment in research to protect the health of children from hazards in the home.

"If we are going to understand the role of indoor bacteria in human health, we must be able to identify and quantify the relevant bacterial species contributing to the health problems,” says Atin Adhikari, PhD, assistant professor of environmental health at the UC College of Medicine and principal investigator of the study.

"The association between bacterial contamination and respiratory health has lagged behind mold studies because it is difficult to determine which species of bacteria are growing in homes and most of the bacterial species are non-culturable and not identified yet,” adds Adhikari. "These new data will help us more accurately target and combat the bacteria and to explore synergistic health effects of bacteria and molds growing in water damaged homes.”

The UC-based team will report its findings June 18, 2012, at the American Society for Microbiology meeting in San Francisco.

For this study, Adhikari and UC postdoctoral fellow Eric Kettleson, PhD, analyzed samples collected from 42 homes from the Cincinnati Childhood Allergy and Air Pollution Study, a National Institute of Environmental Health Sciences-funded project examining the long-term effects of environmental exposures on respiratory health and allergy development in children.

Included homes fell into one of two categories—"high mold” or "low mold”—based on previously reported environmental relative moldiness index (ERMI), a DNA-based mold level analysis tool developed by the U.S. Environmental Protection Agency (EPA) that combines results of the analysis of 36 different types of mold into one index to describe a home’s cumulative mold burden.

The team then compared the ERMI values and types of bacteria found in both high- and low-mold homes in an effort to better understand the environmental sources and home characteristics that influence indoor bacterial contamination.

They found strong correlations between Mycobacterium and visible mold and also between Stenotrophomonas and environmental relative moldiness index.

"Stenotrophomonas maltophilia—an emerging multidrug-resistant global opportunistic pathogen—was isolated from numerous environmental sources. Surprisingly, it was never assessed quantitatively in indoor home environments— especially in water damaged homes where this can be a real concern and may cause inhalation exposure risks to occupants. Stenotrophomonas maltophilia is the first bacterial species associated with higher ERMI values in homes,” adds Kettleson.

Co-authors of this study include Stephen Vesper, PhD, of the U.S. Environmental Protection Agency (EPA); and Tiina Reponen, PhD, Sergey Grinshpun, PhD, and Sudhir Kumar, PhD of the Department of Environmental Health.

This study was partially funded by the U.S. Department of Housing and Urban Development, National Institute of Environmental Health Sciences and U.S. Environmental Protection Agency’s Office of Research.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>