Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research Identifies Specific Bacteria Linked to Indoor Water-Damage and Mold

Bacterial contamination in water-damaged buildings has been identified as a potential cause of health problems, including infection and respiratory conditions like asthma.

Which specific bacteria contribute to these problems, however, has been unknown—making it difficult for public health officials to develop tools to effectively address the underlying source of the problem.

In a new study, a University of Cincinnati (UC) environmental health research team found evidence linking two specific strains of bacteria— Stenotrophomonas and Mycobacterium—to indoor mold from water damage. The research is part of the U.S. Department of Housing and Urban Development’s investment in research to protect the health of children from hazards in the home.

"If we are going to understand the role of indoor bacteria in human health, we must be able to identify and quantify the relevant bacterial species contributing to the health problems,” says Atin Adhikari, PhD, assistant professor of environmental health at the UC College of Medicine and principal investigator of the study.

"The association between bacterial contamination and respiratory health has lagged behind mold studies because it is difficult to determine which species of bacteria are growing in homes and most of the bacterial species are non-culturable and not identified yet,” adds Adhikari. "These new data will help us more accurately target and combat the bacteria and to explore synergistic health effects of bacteria and molds growing in water damaged homes.”

The UC-based team will report its findings June 18, 2012, at the American Society for Microbiology meeting in San Francisco.

For this study, Adhikari and UC postdoctoral fellow Eric Kettleson, PhD, analyzed samples collected from 42 homes from the Cincinnati Childhood Allergy and Air Pollution Study, a National Institute of Environmental Health Sciences-funded project examining the long-term effects of environmental exposures on respiratory health and allergy development in children.

Included homes fell into one of two categories—"high mold” or "low mold”—based on previously reported environmental relative moldiness index (ERMI), a DNA-based mold level analysis tool developed by the U.S. Environmental Protection Agency (EPA) that combines results of the analysis of 36 different types of mold into one index to describe a home’s cumulative mold burden.

The team then compared the ERMI values and types of bacteria found in both high- and low-mold homes in an effort to better understand the environmental sources and home characteristics that influence indoor bacterial contamination.

They found strong correlations between Mycobacterium and visible mold and also between Stenotrophomonas and environmental relative moldiness index.

"Stenotrophomonas maltophilia—an emerging multidrug-resistant global opportunistic pathogen—was isolated from numerous environmental sources. Surprisingly, it was never assessed quantitatively in indoor home environments— especially in water damaged homes where this can be a real concern and may cause inhalation exposure risks to occupants. Stenotrophomonas maltophilia is the first bacterial species associated with higher ERMI values in homes,” adds Kettleson.

Co-authors of this study include Stephen Vesper, PhD, of the U.S. Environmental Protection Agency (EPA); and Tiina Reponen, PhD, Sergey Grinshpun, PhD, and Sudhir Kumar, PhD of the Department of Environmental Health.

This study was partially funded by the U.S. Department of Housing and Urban Development, National Institute of Environmental Health Sciences and U.S. Environmental Protection Agency’s Office of Research.

Amanda Harper | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>