Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Identifies Specific Bacteria Linked to Indoor Water-Damage and Mold

20.06.2012
Bacterial contamination in water-damaged buildings has been identified as a potential cause of health problems, including infection and respiratory conditions like asthma.

Which specific bacteria contribute to these problems, however, has been unknown—making it difficult for public health officials to develop tools to effectively address the underlying source of the problem.

In a new study, a University of Cincinnati (UC) environmental health research team found evidence linking two specific strains of bacteria— Stenotrophomonas and Mycobacterium—to indoor mold from water damage. The research is part of the U.S. Department of Housing and Urban Development’s investment in research to protect the health of children from hazards in the home.

"If we are going to understand the role of indoor bacteria in human health, we must be able to identify and quantify the relevant bacterial species contributing to the health problems,” says Atin Adhikari, PhD, assistant professor of environmental health at the UC College of Medicine and principal investigator of the study.

"The association between bacterial contamination and respiratory health has lagged behind mold studies because it is difficult to determine which species of bacteria are growing in homes and most of the bacterial species are non-culturable and not identified yet,” adds Adhikari. "These new data will help us more accurately target and combat the bacteria and to explore synergistic health effects of bacteria and molds growing in water damaged homes.”

The UC-based team will report its findings June 18, 2012, at the American Society for Microbiology meeting in San Francisco.

For this study, Adhikari and UC postdoctoral fellow Eric Kettleson, PhD, analyzed samples collected from 42 homes from the Cincinnati Childhood Allergy and Air Pollution Study, a National Institute of Environmental Health Sciences-funded project examining the long-term effects of environmental exposures on respiratory health and allergy development in children.

Included homes fell into one of two categories—"high mold” or "low mold”—based on previously reported environmental relative moldiness index (ERMI), a DNA-based mold level analysis tool developed by the U.S. Environmental Protection Agency (EPA) that combines results of the analysis of 36 different types of mold into one index to describe a home’s cumulative mold burden.

The team then compared the ERMI values and types of bacteria found in both high- and low-mold homes in an effort to better understand the environmental sources and home characteristics that influence indoor bacterial contamination.

They found strong correlations between Mycobacterium and visible mold and also between Stenotrophomonas and environmental relative moldiness index.

"Stenotrophomonas maltophilia—an emerging multidrug-resistant global opportunistic pathogen—was isolated from numerous environmental sources. Surprisingly, it was never assessed quantitatively in indoor home environments— especially in water damaged homes where this can be a real concern and may cause inhalation exposure risks to occupants. Stenotrophomonas maltophilia is the first bacterial species associated with higher ERMI values in homes,” adds Kettleson.

Co-authors of this study include Stephen Vesper, PhD, of the U.S. Environmental Protection Agency (EPA); and Tiina Reponen, PhD, Sergey Grinshpun, PhD, and Sudhir Kumar, PhD of the Department of Environmental Health.

This study was partially funded by the U.S. Department of Housing and Urban Development, National Institute of Environmental Health Sciences and U.S. Environmental Protection Agency’s Office of Research.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>