Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research may boost drug efficacy in treating pulmonary arterial hypertension

08.01.2014
Intravenous/sublingual tissue-penetrating homing peptide enhances activity of other pulmonary drugs, according to new research published in the American Journal of Pathology

The development of new, more effective vasodilators to treat pulmonary arterial hypertension (PAH) has been hampered because of their systemic toxicity and adverse side effects.

An international team of investigators seeking to surmount these problems and increase drug efficacy have determined that a vascular homing peptide can selectively target hypertensive pulmonary arteries to boost the pulmonary but not systemic effects of vasodilators. Importantly for potential clinical use, this peptide retains its activity when given sublingually. The results using a rat model of PAH are published in the American Journal of Pathology.

PAH is a cardiovascular disease characterized by a resting mean pulmonary arterial pressure >25 mmHg, or >30 mmHg during exercise. Symptoms of PAH are shortness of breath, chronic fatigue, dizziness, peripheral edema, cyanosis, and chest pain. PAH results from pulmonary vasoconstriction and vascular remodelling accompanied by endothelial dysfunction, fibroblast activation, and endothelial cellular proliferation. Without treatment, heart failure and death may occur.

"Our results open the door to a new direction of PAH treatment. These findings have high clinical significance because CAR (peptide CARSKNKDC) enables the down-dosing of not only vasodilators, but any PAH drug to reduce its systemic side effects without decreasing its pulmonary efficacy," says Masahiko Oka, MD, PhD, of the Department of Pharmacology and Internal Medicine and Center for Lung Biology at the University of South Alabama.

In previous work, the investigators found that in two experimental models of PAH in rats the homing peptide CAR selectively accumulates in the walls of hypertensive pulmonary arteries. In the current study, PAH was experimentally induced in rats by subcutaneous injection of Sugen5416, followed by exposure to hypoxia for three weeks, and then returned to normal oxygen levels for two weeks. These rats manifest very high right ventricular systolic pressure (RVSP) compared to controls (102 mmHg vs.24 mmHg). Histologically, small pulmonary arteries and arterioles display severe, occlusive neointimal lesions.

Intravenous CAR was found in the pulmonary arteries of the PAH rats but not in normal pulmonary arteries. CAR was not detectable in the liver, spleen, or heart but was found in the endothelium and fibrotic tissue of severely remodeled pulmonary arterial walls. Notable levels were also found in kidney tubules but this reflects where it is excreted, say the authors.

The investigators then looked at the effects of CAR on vasodilating drugs. They found that co-administration of CAR significantly enhanced the pressure-lowering effects of the Rho kinase inhibitor fasudil on RVSP but not on systolic systemic arterial pressure. CAR also boosted the pulmonary vasodilator effects of the phosphodiesterase 5 inhibitor sildenafil and the tyrosine kinase inhibitor imatinib.

One limitation of homing peptides is finding a good route of administration. Intravenous administration is impractical on a routine basis and oral bioavailability of peptides is poor due to digestive degradation. The authors were able to show that CAR was effective when given sublingually, and this route might even be superior to administration via injection.

"Additional studies are warranted to examine if CAR works similarly in human PAH as in the rat model. However, our results open the door to a new direction of PAH treatment and warrant further investigation," says Dr. Oka.

The concepts underlying the study were first established in tumor biology with the identification of disease-specific, distinctive surface markers of tumor blood vessels that are not present in the vessels of normal tissues. Homing peptides are substances that find their way to receptors in these abnormal blood vessels, and are being developed to transport drugs selectively to tumors. These peptides can spread into tumor tissue, and can target drug delivery where it is needed. Some homing peptides chemically couple with the drug being transported, but this can weaken the drug's activity. Other homing peptides can transport a drug without chemically interacting with it, a process known as the "bystander effect"; the advantage is that the drug's activity is not compromised by its carrier.

Eileen Leahy | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht Experimental MERS vaccine shows promise in animal studies
29.07.2015 | NIH/National Institute of Allergy and Infectious Diseases

nachricht It don't mean a thing if the brain ain't got that swing
28.07.2015 | University of California - Berkeley

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

A New Litmus Test for Chaos?

29.07.2015 | Physics and Astronomy

New Computer Model Could Explain how Simple Molecules Took First Step Toward Life

29.07.2015 | Life Sciences

New ERC calls published under Horizon 2020

29.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>