Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research may boost drug efficacy in treating pulmonary arterial hypertension

08.01.2014
Intravenous/sublingual tissue-penetrating homing peptide enhances activity of other pulmonary drugs, according to new research published in the American Journal of Pathology

The development of new, more effective vasodilators to treat pulmonary arterial hypertension (PAH) has been hampered because of their systemic toxicity and adverse side effects.

An international team of investigators seeking to surmount these problems and increase drug efficacy have determined that a vascular homing peptide can selectively target hypertensive pulmonary arteries to boost the pulmonary but not systemic effects of vasodilators. Importantly for potential clinical use, this peptide retains its activity when given sublingually. The results using a rat model of PAH are published in the American Journal of Pathology.

PAH is a cardiovascular disease characterized by a resting mean pulmonary arterial pressure >25 mmHg, or >30 mmHg during exercise. Symptoms of PAH are shortness of breath, chronic fatigue, dizziness, peripheral edema, cyanosis, and chest pain. PAH results from pulmonary vasoconstriction and vascular remodelling accompanied by endothelial dysfunction, fibroblast activation, and endothelial cellular proliferation. Without treatment, heart failure and death may occur.

"Our results open the door to a new direction of PAH treatment. These findings have high clinical significance because CAR (peptide CARSKNKDC) enables the down-dosing of not only vasodilators, but any PAH drug to reduce its systemic side effects without decreasing its pulmonary efficacy," says Masahiko Oka, MD, PhD, of the Department of Pharmacology and Internal Medicine and Center for Lung Biology at the University of South Alabama.

In previous work, the investigators found that in two experimental models of PAH in rats the homing peptide CAR selectively accumulates in the walls of hypertensive pulmonary arteries. In the current study, PAH was experimentally induced in rats by subcutaneous injection of Sugen5416, followed by exposure to hypoxia for three weeks, and then returned to normal oxygen levels for two weeks. These rats manifest very high right ventricular systolic pressure (RVSP) compared to controls (102 mmHg vs.24 mmHg). Histologically, small pulmonary arteries and arterioles display severe, occlusive neointimal lesions.

Intravenous CAR was found in the pulmonary arteries of the PAH rats but not in normal pulmonary arteries. CAR was not detectable in the liver, spleen, or heart but was found in the endothelium and fibrotic tissue of severely remodeled pulmonary arterial walls. Notable levels were also found in kidney tubules but this reflects where it is excreted, say the authors.

The investigators then looked at the effects of CAR on vasodilating drugs. They found that co-administration of CAR significantly enhanced the pressure-lowering effects of the Rho kinase inhibitor fasudil on RVSP but not on systolic systemic arterial pressure. CAR also boosted the pulmonary vasodilator effects of the phosphodiesterase 5 inhibitor sildenafil and the tyrosine kinase inhibitor imatinib.

One limitation of homing peptides is finding a good route of administration. Intravenous administration is impractical on a routine basis and oral bioavailability of peptides is poor due to digestive degradation. The authors were able to show that CAR was effective when given sublingually, and this route might even be superior to administration via injection.

"Additional studies are warranted to examine if CAR works similarly in human PAH as in the rat model. However, our results open the door to a new direction of PAH treatment and warrant further investigation," says Dr. Oka.

The concepts underlying the study were first established in tumor biology with the identification of disease-specific, distinctive surface markers of tumor blood vessels that are not present in the vessels of normal tissues. Homing peptides are substances that find their way to receptors in these abnormal blood vessels, and are being developed to transport drugs selectively to tumors. These peptides can spread into tumor tissue, and can target drug delivery where it is needed. Some homing peptides chemically couple with the drug being transported, but this can weaken the drug's activity. Other homing peptides can transport a drug without chemically interacting with it, a process known as the "bystander effect"; the advantage is that the drug's activity is not compromised by its carrier.

Eileen Leahy | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>