Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lipids in the brain an important factor for Alzheimer's disease? Flemish scientists crack the code

11.12.2007
As the most common form of dementia in the Western world, Alzheimer's disease carries enormous implications for our ageing society. It is generally accepted that the disease is caused by Alzheimer peptide (A -peptide) protofibrils.

Until now, the conditions under which this type of protofibril is formed and leads to the disease remained unknown. VIB researchers have now discovered that certain lipids, present also in our brains, promote the formation of this protofibril. This discovery is of major importance because it opens up new avenues of research into finding medicines against Alzheimer's disease. It also explains earlier indications of a link between lipids and Alzheimer's disease.

Misfolded proteins: cause of various diseases

The biological functioning of cells depends on the right folding of thousands of proteins. Normally, cells automatically correct misfolded proteins. In diseases such as Alzheimer’s, Parkinson's and Creutzfeld-Jacob's, however, misfolded proteins are deposited in the body's tissues. In Alzheimer's disease – the most common form of dementia, which in Belgium alone affects about 100,000 people – misfolding of the A -amyloid peptide leads in various stages to the formation of plaques. These plaques consist of accumulations of so-called fibrils and is not in itself toxic. One of the intermediary stages in the formation of plaques is the formation of the protofibril form of the A -peptide. Protofibrils are toxic for brain cells, causing the poisoned cells to die off and leading to memory loss. This is why these protofibrils are considered to be the main cause of the symptoms of Alzheimer's disease.

Surrounding brain lipids destabilize plaques

VIB researchers were able, using certain lipids, to convert the fibrils into protofibrils. This came as a surprise, for it had long been assumed that the fibrils – and the plaque they cause – are stable and that once they have formed they cannot disappear or be transformed into another structure. Ivo Martins, Joost Schymkowitz and Frederic Rousseau (VIB, Vrije Universiteit Brussel), and Inna Kupperstein and Bart De Strooper (VIB, K.U.Leuven) have shown that certain lipids normally occurring in the brain can destabilize the fibrils, and therefore also the plaque that is so typical of Alzheimer's disease. The liberated protofibrils are toxic for brain cells, causing them to die off – at least in vitro. The researchers were able to show that this also happens in vivo by injecting laboratory animals (mice) with the protofibrils. This caused memory loss in the mice. The researchers explain that these symptoms are comparable with those of early stage dementia in humans.

Producing protofibrils for new applications in medicine

The discovery opens up a new avenue of research into possible medicines against Alzheimer's disease. It indicates that substances that neutralize the toxicity or the formation of protofibrils might be able to be used as medicines against Alzheimer's disease. With the discovery of a method for producing toxic protofibrils, the researchers at the VIB have provided a good model for finding medicines that could counteract the formation of protofibrils.

Their research also indicates that the concentration of lipids in the brain greatly influences the biological equilibrium between non-toxic plaques and toxic oligomeres. These results open up new avenues of research into the effects of fat metabolism for diseases such as Alzheimer's.

The research clearly exhibits the advantages to be gleaned from bundling different research groups' expertise. The important results are the fruit of a close collaboration between researchers at the VIB Switch Laboratory, Vrije Universiteit Brussel, and the VIB Department of Molecular and Developmental Genetics, K.U.Leuven.

Sooike Stoops | alfa
Further information:
http://www.vib.be

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>