Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lipids in the brain an important factor for Alzheimer's disease? Flemish scientists crack the code

11.12.2007
As the most common form of dementia in the Western world, Alzheimer's disease carries enormous implications for our ageing society. It is generally accepted that the disease is caused by Alzheimer peptide (A -peptide) protofibrils.

Until now, the conditions under which this type of protofibril is formed and leads to the disease remained unknown. VIB researchers have now discovered that certain lipids, present also in our brains, promote the formation of this protofibril. This discovery is of major importance because it opens up new avenues of research into finding medicines against Alzheimer's disease. It also explains earlier indications of a link between lipids and Alzheimer's disease.

Misfolded proteins: cause of various diseases

The biological functioning of cells depends on the right folding of thousands of proteins. Normally, cells automatically correct misfolded proteins. In diseases such as Alzheimer’s, Parkinson's and Creutzfeld-Jacob's, however, misfolded proteins are deposited in the body's tissues. In Alzheimer's disease – the most common form of dementia, which in Belgium alone affects about 100,000 people – misfolding of the A -amyloid peptide leads in various stages to the formation of plaques. These plaques consist of accumulations of so-called fibrils and is not in itself toxic. One of the intermediary stages in the formation of plaques is the formation of the protofibril form of the A -peptide. Protofibrils are toxic for brain cells, causing the poisoned cells to die off and leading to memory loss. This is why these protofibrils are considered to be the main cause of the symptoms of Alzheimer's disease.

Surrounding brain lipids destabilize plaques

VIB researchers were able, using certain lipids, to convert the fibrils into protofibrils. This came as a surprise, for it had long been assumed that the fibrils – and the plaque they cause – are stable and that once they have formed they cannot disappear or be transformed into another structure. Ivo Martins, Joost Schymkowitz and Frederic Rousseau (VIB, Vrije Universiteit Brussel), and Inna Kupperstein and Bart De Strooper (VIB, K.U.Leuven) have shown that certain lipids normally occurring in the brain can destabilize the fibrils, and therefore also the plaque that is so typical of Alzheimer's disease. The liberated protofibrils are toxic for brain cells, causing them to die off – at least in vitro. The researchers were able to show that this also happens in vivo by injecting laboratory animals (mice) with the protofibrils. This caused memory loss in the mice. The researchers explain that these symptoms are comparable with those of early stage dementia in humans.

Producing protofibrils for new applications in medicine

The discovery opens up a new avenue of research into possible medicines against Alzheimer's disease. It indicates that substances that neutralize the toxicity or the formation of protofibrils might be able to be used as medicines against Alzheimer's disease. With the discovery of a method for producing toxic protofibrils, the researchers at the VIB have provided a good model for finding medicines that could counteract the formation of protofibrils.

Their research also indicates that the concentration of lipids in the brain greatly influences the biological equilibrium between non-toxic plaques and toxic oligomeres. These results open up new avenues of research into the effects of fat metabolism for diseases such as Alzheimer's.

The research clearly exhibits the advantages to be gleaned from bundling different research groups' expertise. The important results are the fruit of a close collaboration between researchers at the VIB Switch Laboratory, Vrije Universiteit Brussel, and the VIB Department of Molecular and Developmental Genetics, K.U.Leuven.

Sooike Stoops | alfa
Further information:
http://www.vib.be

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>