Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatment for age-related macular degeneration within sight

03.12.2007
Research in The FASEB Journal gives hope to 8 million Americans at high risk for blindness-causing disease

With 8 million people at high risk for advanced age-related macular degeneration, researchers from Harvard and Japan discovered that the experimental drug, endostatin, may be the cure. A research report published in the December 2007 issue of The FASEB Journal, describes how giving endostatin to mice significantly reduced or eliminated abnormal blood vessel growth within the eye, which is ultimately why the disease causes blindness.

“Our study provides intriguing findings that may lead to a better treatment of age-related macular degeneration,” said Alexander Marneros, the first author of the report, “but clinical studies in patients with age-related macular degeneration are still necessary.”

In this study, researchers describe testing the effects of endostatin on mice lacking this naturally occurring substance. The mice without endostatin were about three times more likely to develop advanced age-related macular degeneration (AMD) than normal mice. Then the researchers administered endostatin to both sets of mice. In the mice lacking endostatin, the number of abnormal blood vessels that cause AMD were reduced to normal levels. In control mice with normal levels of endostatin, the number of abnormal blood vessels were practically undetectable.

“With Baby Boomers reaching advanced ages, new treatments are desperately needed to keep age-related macular degeneration from becoming a national epidemic,” said Gerald Weissmann, MD, Editor-in-Chief of The FASEB Journal. “This research provides hope for those at risk for blindness, and it gives everyone another glimpse of how investments in molecular biology will ultimately pay off in terms of new treatments and cures.”

AMD is a progressive disease that affects the part of the eye that allows people to see fine details. The disease gradually destroys sharp, central vision, and in advanced stages ultimately leads to total blindness. Abnormal blood vessel growth, also known as angiogenesis, is a hallmark of advanced AMD. These faulty blood vessels leak fluids and blood, causing catastrophic vision loss. As the name implies, risk for age-related macular degeneration increases with age, and 8 million people are considered to be at high risk for the disease. Of these individuals, approximately 1 to 1.3 million will develop advanced AMD within the next five years. Endostatin is an experimental drug, which is currently being tested to stop cancer in people by restricting the formation of abnormal blood vessels supply blood to tumors. Endostatin is a protein in collagen, and while collagen is used in a range of products for skin care to gelatin desserts, consumption or use of these products does not have any effect on tumors or AMD.

Weissmann added, “This research proves once and for all that endostatin functions as the body’s own natural inhibitor of new blood vessel growth as Judah Folkman of Harvard predicted.”

Cody Mooneyhan | EurekAlert!
Further information:
http://www.fasebj.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>