Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatment for age-related macular degeneration within sight

03.12.2007
Research in The FASEB Journal gives hope to 8 million Americans at high risk for blindness-causing disease

With 8 million people at high risk for advanced age-related macular degeneration, researchers from Harvard and Japan discovered that the experimental drug, endostatin, may be the cure. A research report published in the December 2007 issue of The FASEB Journal, describes how giving endostatin to mice significantly reduced or eliminated abnormal blood vessel growth within the eye, which is ultimately why the disease causes blindness.

“Our study provides intriguing findings that may lead to a better treatment of age-related macular degeneration,” said Alexander Marneros, the first author of the report, “but clinical studies in patients with age-related macular degeneration are still necessary.”

In this study, researchers describe testing the effects of endostatin on mice lacking this naturally occurring substance. The mice without endostatin were about three times more likely to develop advanced age-related macular degeneration (AMD) than normal mice. Then the researchers administered endostatin to both sets of mice. In the mice lacking endostatin, the number of abnormal blood vessels that cause AMD were reduced to normal levels. In control mice with normal levels of endostatin, the number of abnormal blood vessels were practically undetectable.

“With Baby Boomers reaching advanced ages, new treatments are desperately needed to keep age-related macular degeneration from becoming a national epidemic,” said Gerald Weissmann, MD, Editor-in-Chief of The FASEB Journal. “This research provides hope for those at risk for blindness, and it gives everyone another glimpse of how investments in molecular biology will ultimately pay off in terms of new treatments and cures.”

AMD is a progressive disease that affects the part of the eye that allows people to see fine details. The disease gradually destroys sharp, central vision, and in advanced stages ultimately leads to total blindness. Abnormal blood vessel growth, also known as angiogenesis, is a hallmark of advanced AMD. These faulty blood vessels leak fluids and blood, causing catastrophic vision loss. As the name implies, risk for age-related macular degeneration increases with age, and 8 million people are considered to be at high risk for the disease. Of these individuals, approximately 1 to 1.3 million will develop advanced AMD within the next five years. Endostatin is an experimental drug, which is currently being tested to stop cancer in people by restricting the formation of abnormal blood vessels supply blood to tumors. Endostatin is a protein in collagen, and while collagen is used in a range of products for skin care to gelatin desserts, consumption or use of these products does not have any effect on tumors or AMD.

Weissmann added, “This research proves once and for all that endostatin functions as the body’s own natural inhibitor of new blood vessel growth as Judah Folkman of Harvard predicted.”

Cody Mooneyhan | EurekAlert!
Further information:
http://www.fasebj.org

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>