Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How schizophrenia develops: Major clues discovered

18.10.2007
Findings may lead to better medications to correct gene-related problem

Schizophrenia may occur, in part, because of a problem in an intermittent on/off switch for a gene involved in making a key chemical messenger in the brain, scientists have found in a study of human brain tissue.

The researchers found that the gene is turned on at increasingly high rates during normal development of the prefrontal cortex, the part of the brain involved in higher functions like thinking and decision-making – but that this normal increase may not occur in people with schizophrenia.

The study was funded by the National Institutes of Health’s National Institute of Mental Health (NIMH) and National Institute of Child Health and Human Development.

The gene, GAD1, makes an enzyme essential for production of the chemical messenger, called GABA. The more the gene is turned on, the more GABA synthesis can occur, under normal circumstances. GABA helps regulate the flow of electrical traffic that enables brain cells to communicate with each other. It is among the major neurotransmitters in the brain.

Abnormalities in brain development and in GABA synthesis are known to play a role in schizophrenia, but the underlying molecular mechanisms are unknown. In this study, scientists discovered that defects in specific epigenetic actions – biochemical reactions that regulate gene activity, such as turning genes on and off so that they can make substances like the GAD1 enzyme – are involved.

Results of the research were published in the October 17 issue of the Journal of Neuroscience, by Schahram Akbarian, MD, PhD, Hsien-Sung Huang, PhD student, and colleagues at the University of Massachusetts Medical School and Baylor College of Medicine.

“This discovery opens a new area for exploration of schizophrenia,” said NIMH Director Thomas R. Insel, MD. “Studies have yielded very strong evidence that schizophrenia involves a decrease in the enzymes, like GAD1, that help make the neurotransmitter GABA. Now we’re starting to identify the mechanisms involved, and our discoveries are pointing to potential new targets for medications.”

Another enzyme, Mll1, may play a role in the epigenetic actions. For genes to be turned on, temporary structural changes in certain proteins - histones - must take place to expose the genes' blueprints in DNA. The researchers found evidence that, in schizophrenia, changes in Mll1 activity may interfere with this process in histones whose alterations enable the GAD1 blueprint to be exposed.

The researchers also showed, in mice, that antipsychotic medications like clozapine appear to correct this epigenetic flaw. This raises the possibility of developing new medications aimed at correcting defects in the mechanisms involved.

Finding more precise molecular targets for development of new schizophrenia medications is a key effort, because it can lead to more effective treatments with fewer side effects. Clozapine and other current antipsychotic medications are effective for many patients, but not all, and they can cause side effects severe enough that some people choose to stop treatment.

The researchers also found that people with three different variations of the GAD1 gene – variations previously associated with schizophrenia – also were more likely to have indicators of a malfunction in brain development. Among them were indicators of altered epigenetic actions related to GABA synthesis.

“We’ve known that schizophrenia is a developmental disease, and that something happens in the maturation of the prefrontal cortex during this vulnerable period of life. Now we’re beginning to find out what it is, and that sets the stage for better ways of preventing and treating it,” Akbarian said.

Susan Cahill | EurekAlert!
Further information:
http://www.nimh.nih.gov/
http://www.nimh.nih.gov/health/topics/schizophrenia/index.shtml
http://www.nih.gov

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>