Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How schizophrenia develops: Major clues discovered

18.10.2007
Findings may lead to better medications to correct gene-related problem

Schizophrenia may occur, in part, because of a problem in an intermittent on/off switch for a gene involved in making a key chemical messenger in the brain, scientists have found in a study of human brain tissue.

The researchers found that the gene is turned on at increasingly high rates during normal development of the prefrontal cortex, the part of the brain involved in higher functions like thinking and decision-making – but that this normal increase may not occur in people with schizophrenia.

The study was funded by the National Institutes of Health’s National Institute of Mental Health (NIMH) and National Institute of Child Health and Human Development.

The gene, GAD1, makes an enzyme essential for production of the chemical messenger, called GABA. The more the gene is turned on, the more GABA synthesis can occur, under normal circumstances. GABA helps regulate the flow of electrical traffic that enables brain cells to communicate with each other. It is among the major neurotransmitters in the brain.

Abnormalities in brain development and in GABA synthesis are known to play a role in schizophrenia, but the underlying molecular mechanisms are unknown. In this study, scientists discovered that defects in specific epigenetic actions – biochemical reactions that regulate gene activity, such as turning genes on and off so that they can make substances like the GAD1 enzyme – are involved.

Results of the research were published in the October 17 issue of the Journal of Neuroscience, by Schahram Akbarian, MD, PhD, Hsien-Sung Huang, PhD student, and colleagues at the University of Massachusetts Medical School and Baylor College of Medicine.

“This discovery opens a new area for exploration of schizophrenia,” said NIMH Director Thomas R. Insel, MD. “Studies have yielded very strong evidence that schizophrenia involves a decrease in the enzymes, like GAD1, that help make the neurotransmitter GABA. Now we’re starting to identify the mechanisms involved, and our discoveries are pointing to potential new targets for medications.”

Another enzyme, Mll1, may play a role in the epigenetic actions. For genes to be turned on, temporary structural changes in certain proteins - histones - must take place to expose the genes' blueprints in DNA. The researchers found evidence that, in schizophrenia, changes in Mll1 activity may interfere with this process in histones whose alterations enable the GAD1 blueprint to be exposed.

The researchers also showed, in mice, that antipsychotic medications like clozapine appear to correct this epigenetic flaw. This raises the possibility of developing new medications aimed at correcting defects in the mechanisms involved.

Finding more precise molecular targets for development of new schizophrenia medications is a key effort, because it can lead to more effective treatments with fewer side effects. Clozapine and other current antipsychotic medications are effective for many patients, but not all, and they can cause side effects severe enough that some people choose to stop treatment.

The researchers also found that people with three different variations of the GAD1 gene – variations previously associated with schizophrenia – also were more likely to have indicators of a malfunction in brain development. Among them were indicators of altered epigenetic actions related to GABA synthesis.

“We’ve known that schizophrenia is a developmental disease, and that something happens in the maturation of the prefrontal cortex during this vulnerable period of life. Now we’re beginning to find out what it is, and that sets the stage for better ways of preventing and treating it,” Akbarian said.

Susan Cahill | EurekAlert!
Further information:
http://www.nimh.nih.gov/
http://www.nimh.nih.gov/health/topics/schizophrenia/index.shtml
http://www.nih.gov

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>