Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How schizophrenia develops: Major clues discovered

18.10.2007
Findings may lead to better medications to correct gene-related problem

Schizophrenia may occur, in part, because of a problem in an intermittent on/off switch for a gene involved in making a key chemical messenger in the brain, scientists have found in a study of human brain tissue.

The researchers found that the gene is turned on at increasingly high rates during normal development of the prefrontal cortex, the part of the brain involved in higher functions like thinking and decision-making – but that this normal increase may not occur in people with schizophrenia.

The study was funded by the National Institutes of Health’s National Institute of Mental Health (NIMH) and National Institute of Child Health and Human Development.

The gene, GAD1, makes an enzyme essential for production of the chemical messenger, called GABA. The more the gene is turned on, the more GABA synthesis can occur, under normal circumstances. GABA helps regulate the flow of electrical traffic that enables brain cells to communicate with each other. It is among the major neurotransmitters in the brain.

Abnormalities in brain development and in GABA synthesis are known to play a role in schizophrenia, but the underlying molecular mechanisms are unknown. In this study, scientists discovered that defects in specific epigenetic actions – biochemical reactions that regulate gene activity, such as turning genes on and off so that they can make substances like the GAD1 enzyme – are involved.

Results of the research were published in the October 17 issue of the Journal of Neuroscience, by Schahram Akbarian, MD, PhD, Hsien-Sung Huang, PhD student, and colleagues at the University of Massachusetts Medical School and Baylor College of Medicine.

“This discovery opens a new area for exploration of schizophrenia,” said NIMH Director Thomas R. Insel, MD. “Studies have yielded very strong evidence that schizophrenia involves a decrease in the enzymes, like GAD1, that help make the neurotransmitter GABA. Now we’re starting to identify the mechanisms involved, and our discoveries are pointing to potential new targets for medications.”

Another enzyme, Mll1, may play a role in the epigenetic actions. For genes to be turned on, temporary structural changes in certain proteins - histones - must take place to expose the genes' blueprints in DNA. The researchers found evidence that, in schizophrenia, changes in Mll1 activity may interfere with this process in histones whose alterations enable the GAD1 blueprint to be exposed.

The researchers also showed, in mice, that antipsychotic medications like clozapine appear to correct this epigenetic flaw. This raises the possibility of developing new medications aimed at correcting defects in the mechanisms involved.

Finding more precise molecular targets for development of new schizophrenia medications is a key effort, because it can lead to more effective treatments with fewer side effects. Clozapine and other current antipsychotic medications are effective for many patients, but not all, and they can cause side effects severe enough that some people choose to stop treatment.

The researchers also found that people with three different variations of the GAD1 gene – variations previously associated with schizophrenia – also were more likely to have indicators of a malfunction in brain development. Among them were indicators of altered epigenetic actions related to GABA synthesis.

“We’ve known that schizophrenia is a developmental disease, and that something happens in the maturation of the prefrontal cortex during this vulnerable period of life. Now we’re beginning to find out what it is, and that sets the stage for better ways of preventing and treating it,” Akbarian said.

Susan Cahill | EurekAlert!
Further information:
http://www.nimh.nih.gov/
http://www.nimh.nih.gov/health/topics/schizophrenia/index.shtml
http://www.nih.gov

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>