Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Joslin researchers uncover potential role of leptin in diabetes

A new Joslin-led study has shown that leptin, a hormone known mainly for regulating appetite control and energy metabolism, plays a major role in islet cell growth and insulin secretion. This finding opens up new avenues for studying leptin and its role in islet cell biology, which may lead to new treatments for diabetes. This study appears in the October 2007 issue of The Journal of Clinical Investigation.

Previous in vitro studies suggested that leptin receptors, which are found in tissues throughout the body including the pancreas as well as the brain, mediate leptin-induced inhibition of insulin secretion in islet cells, also known as beta cells. “We wanted to further our understanding of leptin and its role in beta cells independent of its effects in the brain,” said Rohit N. Kulkarni, M.D., Ph.D., principal investigator at Joslin Diabetes Center and Assistant Professor of Medicine at Harvard Medical School, who led this study. It is currently not known why obese individuals exhibit a high incidence of diabetes despite high levels of both insulin and leptin circulating in the bloodstream.

To understand the role of leptin in the islets, researchers developed a mouse model (known as a “knock out” or KO mouse) genetically engineered not to produce leptin receptors in the pancreas, while maintaining the receptors in the brain and the rest of the body. Researchers found that the mice lacking leptin receptors in the pancreas showed improved glucose tolerance and greater insulin secretion and beta cell growth. “Since the normal function of leptin is to keep insulin levels from getting too high, the lack of leptin enhances insulin action in the beta cells and promotes insulin secretion, which was the result we expected,” said Dr. Kulkarni.

In the second part of the study, the KO mice and a control group of mice with intact leptin receptors were placed on a high-fat diet. Although both the control and KO mice became obese, only the KO mice developed severe glucose intolerance and insulin resistance, a precursor to the development of diabetes. “These novel results indicate that in the presence of obesity, the combination of insulin resistance in the beta cell and the lack of leptin signaling leads to poor beta cell growth and function leading to glucose intolerance. Interactions between leptin and insulin signaling in the beta cell need to be considered to understand the relationship between diabetes and obesity,” said Dr. Kulkarni.

Obesity is a major risk factor for the development of type 2 diabetes, the most common form of the disease. Other risk factors are age (over 40) and a family history of diabetes, although today it is increasing prevalent in younger people, including adolescents. In type 2 diabetes, islet cells malfunction and the body is unable to compensate by growing more beta cells. By investigating the cellular mechanisms that affect islet cell development and growth, Joslin researchers hope to find better ways to prevent and treat the disease.

Follow-up studies will focus on examining the interactions between insulin and leptin signaling in beta cells and identifying the key proteins found in the pathways that regulate beta cell growth and activity. This could lead to the development of therapeutic drugs that manipulate these proteins to influence beta cell growth and function. “Unraveling the role of leptin in the regulation of beta cell biology will be especially useful in understanding the mechanisms that contribute to beta cell growth with implications for the treatment of both type 1 and type 2 diabetes,” said Dr. Kulkarni.

Jenny Eriksen | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>