Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High school footballers wearing special helmets to monitor brain injuries

01.10.2007
As they root for the home team from their bleacher seats this fall, high school gridiron fans in the small Illinois town of Tolono don’t necessarily see anything out of the ordinary down on the field.

But just out of sight, tucked inside many of the maroon helmets worn by the Unity High School Rockets, a revolution of sorts is taking place. This season, 32 varsity team members are sporting helmets outfitted with the same electronic encoder modules now used by a handful of college teams.

The purpose of the high-tech headgear, which uses six strategically placed, spring-loaded accelerometers to wirelessly beam information to a Web-based system on a laptop computer on the sidelines, is to more effectively – and more immediately – detect when blows to players’ heads may result in concussions or more severe brain injuries.

In addition, impact data – including location of hits, magnitude of force and length of hits – is recorded for analysis by a University of Illinois research team led by kinesiology and community health professor Steven Broglio.

“Unity is the only high school in the country using the Head Impact Telemetry System, or HITS,” Broglio said. “There are 1.2 million high school football players across the nation,” he said. “This is a huge population we don’t know much about.”

The system being used in the research partnership between the U. of I. and Unity was developed by Simbex, a research and product-development company based in New Hampshire. It works in tandem with helmets made by Riddell, the nation’s largest helmet manufacturer, and was first tested on the Virginia Tech football team in 2002.

Broglio said a number of other researchers at universities across the nation, including Virginia Tech, the University of North Carolina and Dartmouth, also are using the system as the basis for studies of biomechanical processes caused by concussions and traumatic brain injuries.

At Unity, each varsity player was given a baseline assessment for neurocognitive function prior to the start of the season.

“The baseline assessments are all over the map,” Broglio said. “Because the kids’ brains are still developing, they have different ranges and abilities.”

On the field during practice or on game day, when the encoder in an athlete’s helmet registers a hit, the system beams impact information to the sidelines laptop, which is monitored by the team’s athletic trainer.

“If an athlete is diagnosed with a concussion, he will not return to play until neurocognitive function returns to baseline performance,” Broglio said.

The fact that high school athletes’ brains may not yet be as fully developed as their college or professional counterparts is a large part of Broglio’s motivation for studying the system’s effectiveness on the younger players.

The U. of I. researcher noted in many high schools across the country it’s not unusual for players to take a forceful hit, sit out briefly, then return to play. And sometimes they’ll even mask symptoms from coaches and trainers because they don’t want to miss the action.

Unfortunately, Broglio said, “what other researchers are finding is that people with multiple concussions have incurred Alzheimer’s Disease at a higher rate. Getting their ‘bell rung’ as high school athletes may have permanent repercussions. There seems to be a link.”

He noted that there’s also some evidence in the literature that among high school athletes, the force of an impact may actually be less than it is with older players.

The main focus of Broglio’s continuing research is to sort it all out – to determine how the younger players actually function on the field, and gather data that “will ultimately protect and treat athletes who suffer concussive head injuries.”

“We will look at how hard and where they get hit,” he said, adding that one possible outcome of the work may be determining the need to develop a different type of helmet for high school athletes.

“We may find they’re getting hit in different places and need more padding in those areas of the helmet, for example.”

In Tolono, the system’s ability to monitor where athletes are incurring hits has already led to another discovery, just a couple of weeks into the season.

“The system picked up one athlete who was hitting with the top of his head, a practice that could result in spinal-cord injury,” Broglio said. Because they were able to identify the pattern, the team’s coaches were able to work with the athlete to correct the habit.

“As we’ve gone through this first few weeks using the system, for the most part it’s been very good,” said Scott Hamilton, the Rockets’ head coach. “As this revolutionizing (of the sport) gets better and better, it will be great. Anything to protect our kids is a wonderful concept.”

As is often the case with most innovative technologies when they’re first developed, however, the initial cost of the system is likely to prohibit widespread use – especially at the high school level. Broglio said the system being tested at Unity has a price tag of about $60,000; each helmet costs an additional $1,000.

Nonetheless, he and Hamilton remain hopeful that as more companies compete and additional systems enter the marketplace, the cost eventually will become more affordable for more schools.

“Anytime you talk about money, it’s a fine line between how much money do you spend, and how much is it worth to protect the kids.”

Melissa Mitchell | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>