Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High school footballers wearing special helmets to monitor brain injuries

01.10.2007
As they root for the home team from their bleacher seats this fall, high school gridiron fans in the small Illinois town of Tolono don’t necessarily see anything out of the ordinary down on the field.

But just out of sight, tucked inside many of the maroon helmets worn by the Unity High School Rockets, a revolution of sorts is taking place. This season, 32 varsity team members are sporting helmets outfitted with the same electronic encoder modules now used by a handful of college teams.

The purpose of the high-tech headgear, which uses six strategically placed, spring-loaded accelerometers to wirelessly beam information to a Web-based system on a laptop computer on the sidelines, is to more effectively – and more immediately – detect when blows to players’ heads may result in concussions or more severe brain injuries.

In addition, impact data – including location of hits, magnitude of force and length of hits – is recorded for analysis by a University of Illinois research team led by kinesiology and community health professor Steven Broglio.

“Unity is the only high school in the country using the Head Impact Telemetry System, or HITS,” Broglio said. “There are 1.2 million high school football players across the nation,” he said. “This is a huge population we don’t know much about.”

The system being used in the research partnership between the U. of I. and Unity was developed by Simbex, a research and product-development company based in New Hampshire. It works in tandem with helmets made by Riddell, the nation’s largest helmet manufacturer, and was first tested on the Virginia Tech football team in 2002.

Broglio said a number of other researchers at universities across the nation, including Virginia Tech, the University of North Carolina and Dartmouth, also are using the system as the basis for studies of biomechanical processes caused by concussions and traumatic brain injuries.

At Unity, each varsity player was given a baseline assessment for neurocognitive function prior to the start of the season.

“The baseline assessments are all over the map,” Broglio said. “Because the kids’ brains are still developing, they have different ranges and abilities.”

On the field during practice or on game day, when the encoder in an athlete’s helmet registers a hit, the system beams impact information to the sidelines laptop, which is monitored by the team’s athletic trainer.

“If an athlete is diagnosed with a concussion, he will not return to play until neurocognitive function returns to baseline performance,” Broglio said.

The fact that high school athletes’ brains may not yet be as fully developed as their college or professional counterparts is a large part of Broglio’s motivation for studying the system’s effectiveness on the younger players.

The U. of I. researcher noted in many high schools across the country it’s not unusual for players to take a forceful hit, sit out briefly, then return to play. And sometimes they’ll even mask symptoms from coaches and trainers because they don’t want to miss the action.

Unfortunately, Broglio said, “what other researchers are finding is that people with multiple concussions have incurred Alzheimer’s Disease at a higher rate. Getting their ‘bell rung’ as high school athletes may have permanent repercussions. There seems to be a link.”

He noted that there’s also some evidence in the literature that among high school athletes, the force of an impact may actually be less than it is with older players.

The main focus of Broglio’s continuing research is to sort it all out – to determine how the younger players actually function on the field, and gather data that “will ultimately protect and treat athletes who suffer concussive head injuries.”

“We will look at how hard and where they get hit,” he said, adding that one possible outcome of the work may be determining the need to develop a different type of helmet for high school athletes.

“We may find they’re getting hit in different places and need more padding in those areas of the helmet, for example.”

In Tolono, the system’s ability to monitor where athletes are incurring hits has already led to another discovery, just a couple of weeks into the season.

“The system picked up one athlete who was hitting with the top of his head, a practice that could result in spinal-cord injury,” Broglio said. Because they were able to identify the pattern, the team’s coaches were able to work with the athlete to correct the habit.

“As we’ve gone through this first few weeks using the system, for the most part it’s been very good,” said Scott Hamilton, the Rockets’ head coach. “As this revolutionizing (of the sport) gets better and better, it will be great. Anything to protect our kids is a wonderful concept.”

As is often the case with most innovative technologies when they’re first developed, however, the initial cost of the system is likely to prohibit widespread use – especially at the high school level. Broglio said the system being tested at Unity has a price tag of about $60,000; each helmet costs an additional $1,000.

Nonetheless, he and Hamilton remain hopeful that as more companies compete and additional systems enter the marketplace, the cost eventually will become more affordable for more schools.

“Anytime you talk about money, it’s a fine line between how much money do you spend, and how much is it worth to protect the kids.”

Melissa Mitchell | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>