Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High school footballers wearing special helmets to monitor brain injuries

01.10.2007
As they root for the home team from their bleacher seats this fall, high school gridiron fans in the small Illinois town of Tolono don’t necessarily see anything out of the ordinary down on the field.

But just out of sight, tucked inside many of the maroon helmets worn by the Unity High School Rockets, a revolution of sorts is taking place. This season, 32 varsity team members are sporting helmets outfitted with the same electronic encoder modules now used by a handful of college teams.

The purpose of the high-tech headgear, which uses six strategically placed, spring-loaded accelerometers to wirelessly beam information to a Web-based system on a laptop computer on the sidelines, is to more effectively – and more immediately – detect when blows to players’ heads may result in concussions or more severe brain injuries.

In addition, impact data – including location of hits, magnitude of force and length of hits – is recorded for analysis by a University of Illinois research team led by kinesiology and community health professor Steven Broglio.

“Unity is the only high school in the country using the Head Impact Telemetry System, or HITS,” Broglio said. “There are 1.2 million high school football players across the nation,” he said. “This is a huge population we don’t know much about.”

The system being used in the research partnership between the U. of I. and Unity was developed by Simbex, a research and product-development company based in New Hampshire. It works in tandem with helmets made by Riddell, the nation’s largest helmet manufacturer, and was first tested on the Virginia Tech football team in 2002.

Broglio said a number of other researchers at universities across the nation, including Virginia Tech, the University of North Carolina and Dartmouth, also are using the system as the basis for studies of biomechanical processes caused by concussions and traumatic brain injuries.

At Unity, each varsity player was given a baseline assessment for neurocognitive function prior to the start of the season.

“The baseline assessments are all over the map,” Broglio said. “Because the kids’ brains are still developing, they have different ranges and abilities.”

On the field during practice or on game day, when the encoder in an athlete’s helmet registers a hit, the system beams impact information to the sidelines laptop, which is monitored by the team’s athletic trainer.

“If an athlete is diagnosed with a concussion, he will not return to play until neurocognitive function returns to baseline performance,” Broglio said.

The fact that high school athletes’ brains may not yet be as fully developed as their college or professional counterparts is a large part of Broglio’s motivation for studying the system’s effectiveness on the younger players.

The U. of I. researcher noted in many high schools across the country it’s not unusual for players to take a forceful hit, sit out briefly, then return to play. And sometimes they’ll even mask symptoms from coaches and trainers because they don’t want to miss the action.

Unfortunately, Broglio said, “what other researchers are finding is that people with multiple concussions have incurred Alzheimer’s Disease at a higher rate. Getting their ‘bell rung’ as high school athletes may have permanent repercussions. There seems to be a link.”

He noted that there’s also some evidence in the literature that among high school athletes, the force of an impact may actually be less than it is with older players.

The main focus of Broglio’s continuing research is to sort it all out – to determine how the younger players actually function on the field, and gather data that “will ultimately protect and treat athletes who suffer concussive head injuries.”

“We will look at how hard and where they get hit,” he said, adding that one possible outcome of the work may be determining the need to develop a different type of helmet for high school athletes.

“We may find they’re getting hit in different places and need more padding in those areas of the helmet, for example.”

In Tolono, the system’s ability to monitor where athletes are incurring hits has already led to another discovery, just a couple of weeks into the season.

“The system picked up one athlete who was hitting with the top of his head, a practice that could result in spinal-cord injury,” Broglio said. Because they were able to identify the pattern, the team’s coaches were able to work with the athlete to correct the habit.

“As we’ve gone through this first few weeks using the system, for the most part it’s been very good,” said Scott Hamilton, the Rockets’ head coach. “As this revolutionizing (of the sport) gets better and better, it will be great. Anything to protect our kids is a wonderful concept.”

As is often the case with most innovative technologies when they’re first developed, however, the initial cost of the system is likely to prohibit widespread use – especially at the high school level. Broglio said the system being tested at Unity has a price tag of about $60,000; each helmet costs an additional $1,000.

Nonetheless, he and Hamilton remain hopeful that as more companies compete and additional systems enter the marketplace, the cost eventually will become more affordable for more schools.

“Anytime you talk about money, it’s a fine line between how much money do you spend, and how much is it worth to protect the kids.”

Melissa Mitchell | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>