Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MR spectroscopy identifies breast cancer, reduces biopsies

26.09.2007
Proton magnetic resonance spectroscopy (¹H MRS) used in conjunction with magnetic resonance imaging (MRI) can aid radiologists in diagnosing breast cancer while reducing the number of false-positive results and invasive biopsies, according to a study focusing on non-mass enhancing breast lesions.

The study, conducted at Memorial Sloan-Kettering Cancer Center in New York City, appears in the October issue of the journal Radiology.

“All of the cancers present in this study were identified with MR spectroscopy,” said the study’s lead author, Lia Bartella, M.D., director of breast imaging at Eastside Diagnostic Imaging in New York City.

The American Cancer Society estimates that 212,920 women will be diagnosed with breast cancer in the United States this year. MRI is playing an increasingly important role in the screening of women at high risk for breast cancer. However, while MRI depicts more abnormal findings than other breast screening procedures, it is not 100 percent accurate in distinguishing benign from malignant lesions, resulting in a large number of breast biopsy procedures recommended on the basis of imaging findings. Currently, approximately 80 percent of breast lesions biopsied are found to be benign.

Non-mass enhancing lesions are characterized by enhancement of an area that is not a mass or lump and may extend over large or small regions. Non-mass lesions occur with benign hormonal changes, but can also signify malignancy. Biopsy is often required to distinguish benign non-mass lesions from cancer.

With MR spectroscopy, which adds only 10 minutes to a standard MRI exam, the radiologist is able to see the chemical make-up of a tumor. In most cases, the results indicate whether or not the lesion is cancerous without the need for biopsy.

“Non-mass enhancing lesions frequently pose a dilemma to the radiologist when evaluating the breast for the presence of cancer, especially in premenopausal women,” Dr. Bartella said. “Potentially, the use of proton MR spectroscopy may help decrease the number of benign biopsies for non-mass enhancing lesions.”

For the study, Dr. Bartella and colleagues performed ¹H MRS on 32 non-mass enhancing breast lesions in 32 women, age 20 to 63. Twenty-five of the patients had lesions that had been labeled suspicious at MRI.

¹H MRS can provide radiologists with chemical information about a lesion by measuring the levels of choline compounds, which are markers of an active tumor. In the study, positive choline findings were present in 15 of 32 lesions, including all 12 cancers, giving ¹H MRS a specificity of 85 percent and a sensitivity of 100 percent. If only the lesions with positive choline findings had been biopsied, 17 (68 percent) of 25 lesions may have been spared invasive biopsies and none of the cancers would have been missed.

“By performing MR spectroscopy of the suspicious lesion after an MRI scan, we can noninvasively see which tumors show elevated choline levels and are likely malignant,” Dr. Bartella said. “This chemical information added to the information provided by MRI can eliminate the need for biopsy to find out what the lesion is made of.”

Dr. Bartella hopes that in the future, MR spectroscopy will be incorporated into routine diagnostic breast MRI procedures, significantly decreasing the need for needle biopsies.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>