Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MR spectroscopy identifies breast cancer, reduces biopsies

26.09.2007
Proton magnetic resonance spectroscopy (¹H MRS) used in conjunction with magnetic resonance imaging (MRI) can aid radiologists in diagnosing breast cancer while reducing the number of false-positive results and invasive biopsies, according to a study focusing on non-mass enhancing breast lesions.

The study, conducted at Memorial Sloan-Kettering Cancer Center in New York City, appears in the October issue of the journal Radiology.

“All of the cancers present in this study were identified with MR spectroscopy,” said the study’s lead author, Lia Bartella, M.D., director of breast imaging at Eastside Diagnostic Imaging in New York City.

The American Cancer Society estimates that 212,920 women will be diagnosed with breast cancer in the United States this year. MRI is playing an increasingly important role in the screening of women at high risk for breast cancer. However, while MRI depicts more abnormal findings than other breast screening procedures, it is not 100 percent accurate in distinguishing benign from malignant lesions, resulting in a large number of breast biopsy procedures recommended on the basis of imaging findings. Currently, approximately 80 percent of breast lesions biopsied are found to be benign.

Non-mass enhancing lesions are characterized by enhancement of an area that is not a mass or lump and may extend over large or small regions. Non-mass lesions occur with benign hormonal changes, but can also signify malignancy. Biopsy is often required to distinguish benign non-mass lesions from cancer.

With MR spectroscopy, which adds only 10 minutes to a standard MRI exam, the radiologist is able to see the chemical make-up of a tumor. In most cases, the results indicate whether or not the lesion is cancerous without the need for biopsy.

“Non-mass enhancing lesions frequently pose a dilemma to the radiologist when evaluating the breast for the presence of cancer, especially in premenopausal women,” Dr. Bartella said. “Potentially, the use of proton MR spectroscopy may help decrease the number of benign biopsies for non-mass enhancing lesions.”

For the study, Dr. Bartella and colleagues performed ¹H MRS on 32 non-mass enhancing breast lesions in 32 women, age 20 to 63. Twenty-five of the patients had lesions that had been labeled suspicious at MRI.

¹H MRS can provide radiologists with chemical information about a lesion by measuring the levels of choline compounds, which are markers of an active tumor. In the study, positive choline findings were present in 15 of 32 lesions, including all 12 cancers, giving ¹H MRS a specificity of 85 percent and a sensitivity of 100 percent. If only the lesions with positive choline findings had been biopsied, 17 (68 percent) of 25 lesions may have been spared invasive biopsies and none of the cancers would have been missed.

“By performing MR spectroscopy of the suspicious lesion after an MRI scan, we can noninvasively see which tumors show elevated choline levels and are likely malignant,” Dr. Bartella said. “This chemical information added to the information provided by MRI can eliminate the need for biopsy to find out what the lesion is made of.”

Dr. Bartella hopes that in the future, MR spectroscopy will be incorporated into routine diagnostic breast MRI procedures, significantly decreasing the need for needle biopsies.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>