Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists uncover potential mechanism of memory loss in Alzheimer's disease

07.09.2007
Amyloid-beta protein causes overexcitation of brain cells resulting in abnormal network function

Researchers at the Gladstone Institute of Neurological Disease (GIND) and Baylor College of Medicine have discovered a mechanism by which the protein Amyloid-beta(AB) may impair neurological functions in Alzheimer's disease. AB, which is known to accumulate in the brains of Alzheimer patients, has long been a focus of research into the causes and treatment of the disease. In a study published in the journal Neuron, Gladstone scientists found that A-beta triggers abnormal overexcitation of the very brain networks that are responsible for learning and memory.

"Such abnormal network activity in Alzheimer's patients was thought to be a collateral or secondary event caused by the degeneration of nerve cells," said Jorge J Palop, PhD, Gladstone research scientist and lead author of the study. "But our study suggests that this activity may actually be a primary effect of A-beta and an early determinant of cognitive failure."

The Gladstone team used several genetically engineered mouse models of AD in which memory deficits are triggered by a human gene that causes high levels of A-beta. They discovered that high levels of A-beta induce an insidious type of seizure activity in learning and memory centers that is not accompanied by the usual twitching and jerking movements seen in many forms of epilepsy. In fact, it took sophisticated brain wave recordings in freely behaving mice by electroencephalography (EEG) and telemetry to detect the seizure activity.

"We were really surprised by these findings because A-beta had previously been suspected to primarily suppress neuronal activity," said Lennart Mucke, MD, GIND director and professor of neurology and neuroscience at the University of California, San Francisco (UCSF), and senior author of the study. "This abnormal brain activity could play an important role in the development of Alzheimer-related cognitive impairments."

Physicians have long recognized that Alzheimer patients have a higher incidence of convulsive seizures than reference populations. The new study indicates that A-beta is to blame for this problem and raises the disconcerting possibility that these patients may also have non-convulsive seizures that could easily escape detection by standard clinical exams. The investigators are eager to test this hypothesis in a planned follow-up study of human subjects.

"Our results have important therapeutic implications, because the prevention and reversal of non-convulsive seizure activity has not yet been a major focus of clinical trials in Alzheimer's disease. Our results suggest that the suppression of this activity might prevent and possibly even reverse cognitive impairments induced by high levels of A-beta," said Dr. Mucke.

Valerie Tucker | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>