Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hypothermia Helps Cardiac Patients to Live Longer

08.04.2002


Approximately 375,000 Europeans suffer cardiac arrest every year – often with fatal consequences. Even upon successful resuscitation, several patients suffer severe and irreparable brain damage. One in seven patients could be saved and the amount of serious damage resulting from cardiac arrest could be drastically reduced by reducing the body temperature of those affected to between 32 and 34 degrees in the first 24 hours following the cardiac arrest. Such are the results of a Europe-wide study, in which the University of Bonn was involved. The findings were originally published in the New England Journal of Medicine (N Engl J Med, Feb. 21, 2002; vol. 346 (8) pgs. 549-556).



The medics investigated a group of 275 patients whose blood circulation was interrupted for between 5 and 15 minutes following a cardiac arrest brought on by ventricular fibrillation. The body temperature of half of those affected was lowered to between 32 and 34 degrees within four hours of the cardiac arrest. This was done in a special bed by circulating cold air around the patients` bodies. The cooling process was complete after 24 hours, and the body temperature then brought back to normal. The doctors did not reduce the body temperature of the other half of the patients. Otherwise, both groups were treated identically. "Six months after the cardiac arrest, 55 per cent of the patients exposed to low temperatures showed only very little or no impairment of the brain functions, 4 per cent showed severe neurological damage, 41 per cent had died", reports Dr. Peter Walger, director of the intensive care unit of the Medical Polyclinic at the University of Bonn and one of the co-authors of the study, summarising the findings of the study. "On the other hand", he continues, "we observed very little or no damage among only 39 per cent of the patients not exposed to low temperatures. Of these, 6 per cent had suffered severe brain damage, and 55 per cent had died."

But how do low temperatures protect patients? After the blood circulation has been interrupted for several minutes, free radicals start forming in large amounts in the body. These may start a chain reaction in the resuscitated patient which ends in irreparable brain damage. This adds to the damage caused by the lack of oxygen. Low temperatures appear to slow down both the formation of radicals and also the metabolic processes which they trigger. Investigations into the effect of exposure to low temperatures on the survival chance and the long term damage among resuscitated patients were carried out as early as the 1950s and 1960s. The findings at that time were, however, contradictory, so further investigations were not conducted until the 1990s – first on animals, and then on small groups of patients.


The large number of patients involved in the present study adds weight to its findings. In addition, the findings of an Australian work group published at the same time also reveal similar results und so support the importance of this method of treatment. According to Dr. Walger: "Each year, approximately 375,000 Europeans suffer cardiac arrest; 30,000 of these meet the conditions which we laid down for our study. If these 30,000 patients were all exposed to low temperatures according to the method described, severe neurological damage could be prevented in up to 7,500 cases.“

The New England Journal of Medicine found the results of both studies so impressive that they devoted an editoral and a separate overview article to the theme "Hypothermia following cardiac arrest“. Although further studies are necessary, the authors are already recommending light hypothermia for survivors of a cardiac arrest – as soon as possible and for at least twelve hours.

The Medical Polyclinic was one of eight European centres, which participated in the EU-sponsored study. The doctors worked in close co-operation with the Bonn emergency doctor system, directed by Dr. Matthias Fischer of the clinic for Anesthesiology und special intensive care medicine of the University of Bonn. The anesthesiological intensive care station of the Waldkrankenhauses in Bad Godesberg was also involved in the study.

Dr. Peter Walger | alphagalileo

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>