Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hypothermia Helps Cardiac Patients to Live Longer

08.04.2002


Approximately 375,000 Europeans suffer cardiac arrest every year – often with fatal consequences. Even upon successful resuscitation, several patients suffer severe and irreparable brain damage. One in seven patients could be saved and the amount of serious damage resulting from cardiac arrest could be drastically reduced by reducing the body temperature of those affected to between 32 and 34 degrees in the first 24 hours following the cardiac arrest. Such are the results of a Europe-wide study, in which the University of Bonn was involved. The findings were originally published in the New England Journal of Medicine (N Engl J Med, Feb. 21, 2002; vol. 346 (8) pgs. 549-556).



The medics investigated a group of 275 patients whose blood circulation was interrupted for between 5 and 15 minutes following a cardiac arrest brought on by ventricular fibrillation. The body temperature of half of those affected was lowered to between 32 and 34 degrees within four hours of the cardiac arrest. This was done in a special bed by circulating cold air around the patients` bodies. The cooling process was complete after 24 hours, and the body temperature then brought back to normal. The doctors did not reduce the body temperature of the other half of the patients. Otherwise, both groups were treated identically. "Six months after the cardiac arrest, 55 per cent of the patients exposed to low temperatures showed only very little or no impairment of the brain functions, 4 per cent showed severe neurological damage, 41 per cent had died", reports Dr. Peter Walger, director of the intensive care unit of the Medical Polyclinic at the University of Bonn and one of the co-authors of the study, summarising the findings of the study. "On the other hand", he continues, "we observed very little or no damage among only 39 per cent of the patients not exposed to low temperatures. Of these, 6 per cent had suffered severe brain damage, and 55 per cent had died."

But how do low temperatures protect patients? After the blood circulation has been interrupted for several minutes, free radicals start forming in large amounts in the body. These may start a chain reaction in the resuscitated patient which ends in irreparable brain damage. This adds to the damage caused by the lack of oxygen. Low temperatures appear to slow down both the formation of radicals and also the metabolic processes which they trigger. Investigations into the effect of exposure to low temperatures on the survival chance and the long term damage among resuscitated patients were carried out as early as the 1950s and 1960s. The findings at that time were, however, contradictory, so further investigations were not conducted until the 1990s – first on animals, and then on small groups of patients.


The large number of patients involved in the present study adds weight to its findings. In addition, the findings of an Australian work group published at the same time also reveal similar results und so support the importance of this method of treatment. According to Dr. Walger: "Each year, approximately 375,000 Europeans suffer cardiac arrest; 30,000 of these meet the conditions which we laid down for our study. If these 30,000 patients were all exposed to low temperatures according to the method described, severe neurological damage could be prevented in up to 7,500 cases.“

The New England Journal of Medicine found the results of both studies so impressive that they devoted an editoral and a separate overview article to the theme "Hypothermia following cardiac arrest“. Although further studies are necessary, the authors are already recommending light hypothermia for survivors of a cardiac arrest – as soon as possible and for at least twelve hours.

The Medical Polyclinic was one of eight European centres, which participated in the EU-sponsored study. The doctors worked in close co-operation with the Bonn emergency doctor system, directed by Dr. Matthias Fischer of the clinic for Anesthesiology und special intensive care medicine of the University of Bonn. The anesthesiological intensive care station of the Waldkrankenhauses in Bad Godesberg was also involved in the study.

Dr. Peter Walger | alphagalileo

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>