Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Intensity Ultrasound May Launch an Attack on Cancer, Wherever it Lurks

09.08.2007
An intense form of ultrasound that shakes a tumor until its cells start to leak can trigger an “alarm” that enlists immune defenses against the cancerous invasion, according to a study led by researchers at Duke University's Pratt School of Engineering.

The new findings from animal experiments suggest that once activated by the ultrasound, the immune system might even seek and destroy cancer cells, including those that have spread through the bloodstream to lurk in other parts of the body.

This high-intensity focused ultrasound, or HIFU, is in use or testing in China, Europe and the United States to kill tumors by heating them. But Duke researchers now find that HIFU might work even better if it is first delivered in a manner that just shakes the cells. That shaking ruptures tumor cell membranes, causing them to spill their contents. The toxic spill then alerts the immune system to the cancer threat, leading to the production of tumor-fighting white blood cells.

If the effect seen in mice holds true in human patients, such a treatment could be an important advance in many cancer therapies because of its potential to tackle both primary tumors and metastatic cancers that have spread to other organs -- all without the need for surgery, the research team reported in the Journal of Translational Medicine on Aug. 3 (a “provisional” version appeared online on July 11). The work, done by the engineers in collaboration with cancer immunologists and physicians at the Duke Comprehensive Cancer Center, was supported by the National Institutes of Health.

“In most cancers, what actually ends up killing the patient is the spread of the cancer from its original site to other parts of the body,” said Pei Zhong, an associate professor in Duke’s mechanical engineering and materials science department. “If the patient has a tumor in the kidney or liver, several treatment options -- including surgery, radiation or HIFU -- can be used to get rid of the cancerous tissues. However, if the cancer cells spread to other vital organs such as the lung or brain, the outcomes are often much worse.

“HIFU in the current form can only be used to treat the primary tumor,” he continued. “We now think that HIFU delivered in a different mode, with emphasis on using mechanical vibration to break apart the tumor cells, may have an even more significant impact in suppressing cancer metastasis by waking up the immune system.”

For reasons that are still not completely understood, cancer cells often go largely undetected by the immune system, Zhong said. For an anti-tumor immune response to be effective, it may need to recognize not only the surface proteins of cancer cells, but some of the other proteins locked inside those cells, which Zhong called “danger signals.”

The researchers found in mice with colon cancer that mechanical HIFU delivered to the animals’ tumors sparked an immune response twice as strong as did thermal HIFU, presumably by releasing a much more diverse range of danger signals.

“Our results show that while mechanical HIFU is not as effective as thermal HIFU in killing tumor cells directly, it has the potential to induce a stronger anti-tumor immune response,” Zhong said. “These preliminary findings open up the possibility that we could use heat from HIFU to treat the primary tumor and HIFU-boosted immunotherapy for combating any residual and metastatic tumor cells.”

The lead author of this study is Zhenlin Hu, a former research associate in Zhong’s lab who is now at the Second Military Medical University in Shanghai, China. Other co-authors include: Yunbo Liu, Georgy Sankin and Eric Pua from the Department of Mechanical Engineering and Materials Science at Duke’s Pratt School of Engineering, as well as Xiao Yang, Michael Morse, H. Kim Lyerly and Timothy M. Clay from the Duke Comprehensive Cancer Center.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht Light beam replaces blood test during heart surgery
28.02.2017 | University of Central Florida

nachricht Cells adapt ultra-rapidly to zero gravity
28.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>