Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor painting revolutionizes fight against cancer

17.07.2007
Researchers develop Chlorotoxin:Cy5.5 enabling surgeons to see cancer cells 500 times better than an MRI

A tumor paint developed by researchers at Seattle Children’s Hospital Research Institute and Fred Hutchinson Cancer Research Center will help surgeons see where a tumor begins and ends more precisely by illuminating the cancerous cells. The study, published in the July 15, 2007 issue of Cancer Research, shows that the tumor paint can help surgeons distinguish between cancer cells and normal brain tissue in the operating room. The paint is a scorpion-derived peptide called chlorotoxin that is linked to the molecular beacon Cy5.5.Until now there has been no way to allow surgeons to see tumors “live” during surgery.

Chlorotoxin:Cy5.5 is a fluorescent molecular beacon that emits photons in the near infrared spectrum. This illumination gives surgeons a better chance of removing all of the cancerous cells during surgery without injuring surrounding healthy tissue. This is particularly significant in the brain, where approximately 80% of malignant cancers recur at the edges of the surgical site. Current technology, such as magnetic resonance imaging (MRI) can distinguish tumors from healthy tissue only if more than 1 million cancer cells are present. But Cy5.5 can identify tumors with as few as 2000 cancer cells, making it 500 times more sensitive than MRI.

"My greatest hope is that tumor paint will fundamentally improve cancer therapy,” said James M. Olson, MD, PhD, of Seattle Children’s Hospital and The Hutchison Center who is the senior author of the study. “By allowing surgeons to see cancer that would be undetectable by other means, we can give our patients better outcomes.”

Olson led the team that included neurosurgeons, engineers and biologists. The bioconjugate, Chlorotoxin:Cy5.5 which, when injected, emits a near-infrared light, was created in his laboratory at the Hutchinson Center. In mouse models, the team demonstrated that they could light up brain tumors as small as 1 millimeter in diameter without lighting up the surrounding normal brain tissue. In a prostate cancer model, as few as 200 cancer cells traveling in a mouse lymph channel could be detected.

Chlorotoxin:Cy5.5 is applicable to many cancers, but is especially helpful to surgeons operating on brain tumors. Not only would it reveal whether they’d left behind any bits of tumor, it would also help them avoid removing normal tissue. Chlorotoxin:Cy5.5 activates within hours and it begins binding to cancer cells within minutes. The Chlorotoxin:Cy5.5 signal lasts for 14 days, illuminating cancer cells. Contrast agents currently in use only last for a few minutes.

“I feel fortunate to be working with gifted scientists to bring this revolutionary imaging technique from the laboratory to the bedside,” said Richard Ellenbogen, MD, Pediatric Neurosurgeon, Seattle Children's Hospital and co-investigator on the study. “This development has the potential to save lives and make brain tumor resection safer.”

Surgery remains a primary form of cancer therapy. Despite advances in surgical tools, surgeons currently rely on color, texture or blood supply to differentiate tumor from normal tissue, a distinction that is often subtle and imperfect. The limitations of this method contribute to cancer growth or patient mortality that is potentially preventable. The tumor painting technique combines a visual guide for the surgeon with the potential for significant improvement in accuracy and safety.

Tumor painting has been successfully tested in mice and the pilot safety trials are complete. Olson and his team are preparing the necessary toxicity studies before seeking approval from the Food and Drug Administration to begin clinical trials. Chlorotoxin:Cy5.5 could be used in operating rooms in as little as 18 months. All clinical studies will have consenting adult participants.

Olson and his team believe that Chlorotoxin:Cy5.5 has the potential to be used in the future as a non-invasive screening tool for early detection of skin, cervical, esophageal, colon and lung cancers. It is also useful in identifying positive lymph nodes which could mean a significant advancement for breast, prostate and testicular cancers.

Jennifer Seymour | EurekAlert!
Further information:
http://www.seattlechildrens.org
http://research.seattlechildrens.org/

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>