Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor painting revolutionizes fight against cancer

17.07.2007
Researchers develop Chlorotoxin:Cy5.5 enabling surgeons to see cancer cells 500 times better than an MRI

A tumor paint developed by researchers at Seattle Children’s Hospital Research Institute and Fred Hutchinson Cancer Research Center will help surgeons see where a tumor begins and ends more precisely by illuminating the cancerous cells. The study, published in the July 15, 2007 issue of Cancer Research, shows that the tumor paint can help surgeons distinguish between cancer cells and normal brain tissue in the operating room. The paint is a scorpion-derived peptide called chlorotoxin that is linked to the molecular beacon Cy5.5.Until now there has been no way to allow surgeons to see tumors “live” during surgery.

Chlorotoxin:Cy5.5 is a fluorescent molecular beacon that emits photons in the near infrared spectrum. This illumination gives surgeons a better chance of removing all of the cancerous cells during surgery without injuring surrounding healthy tissue. This is particularly significant in the brain, where approximately 80% of malignant cancers recur at the edges of the surgical site. Current technology, such as magnetic resonance imaging (MRI) can distinguish tumors from healthy tissue only if more than 1 million cancer cells are present. But Cy5.5 can identify tumors with as few as 2000 cancer cells, making it 500 times more sensitive than MRI.

"My greatest hope is that tumor paint will fundamentally improve cancer therapy,” said James M. Olson, MD, PhD, of Seattle Children’s Hospital and The Hutchison Center who is the senior author of the study. “By allowing surgeons to see cancer that would be undetectable by other means, we can give our patients better outcomes.”

Olson led the team that included neurosurgeons, engineers and biologists. The bioconjugate, Chlorotoxin:Cy5.5 which, when injected, emits a near-infrared light, was created in his laboratory at the Hutchinson Center. In mouse models, the team demonstrated that they could light up brain tumors as small as 1 millimeter in diameter without lighting up the surrounding normal brain tissue. In a prostate cancer model, as few as 200 cancer cells traveling in a mouse lymph channel could be detected.

Chlorotoxin:Cy5.5 is applicable to many cancers, but is especially helpful to surgeons operating on brain tumors. Not only would it reveal whether they’d left behind any bits of tumor, it would also help them avoid removing normal tissue. Chlorotoxin:Cy5.5 activates within hours and it begins binding to cancer cells within minutes. The Chlorotoxin:Cy5.5 signal lasts for 14 days, illuminating cancer cells. Contrast agents currently in use only last for a few minutes.

“I feel fortunate to be working with gifted scientists to bring this revolutionary imaging technique from the laboratory to the bedside,” said Richard Ellenbogen, MD, Pediatric Neurosurgeon, Seattle Children's Hospital and co-investigator on the study. “This development has the potential to save lives and make brain tumor resection safer.”

Surgery remains a primary form of cancer therapy. Despite advances in surgical tools, surgeons currently rely on color, texture or blood supply to differentiate tumor from normal tissue, a distinction that is often subtle and imperfect. The limitations of this method contribute to cancer growth or patient mortality that is potentially preventable. The tumor painting technique combines a visual guide for the surgeon with the potential for significant improvement in accuracy and safety.

Tumor painting has been successfully tested in mice and the pilot safety trials are complete. Olson and his team are preparing the necessary toxicity studies before seeking approval from the Food and Drug Administration to begin clinical trials. Chlorotoxin:Cy5.5 could be used in operating rooms in as little as 18 months. All clinical studies will have consenting adult participants.

Olson and his team believe that Chlorotoxin:Cy5.5 has the potential to be used in the future as a non-invasive screening tool for early detection of skin, cervical, esophageal, colon and lung cancers. It is also useful in identifying positive lymph nodes which could mean a significant advancement for breast, prostate and testicular cancers.

Jennifer Seymour | EurekAlert!
Further information:
http://www.seattlechildrens.org
http://research.seattlechildrens.org/

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>