Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor painting revolutionizes fight against cancer

17.07.2007
Researchers develop Chlorotoxin:Cy5.5 enabling surgeons to see cancer cells 500 times better than an MRI

A tumor paint developed by researchers at Seattle Children’s Hospital Research Institute and Fred Hutchinson Cancer Research Center will help surgeons see where a tumor begins and ends more precisely by illuminating the cancerous cells. The study, published in the July 15, 2007 issue of Cancer Research, shows that the tumor paint can help surgeons distinguish between cancer cells and normal brain tissue in the operating room. The paint is a scorpion-derived peptide called chlorotoxin that is linked to the molecular beacon Cy5.5.Until now there has been no way to allow surgeons to see tumors “live” during surgery.

Chlorotoxin:Cy5.5 is a fluorescent molecular beacon that emits photons in the near infrared spectrum. This illumination gives surgeons a better chance of removing all of the cancerous cells during surgery without injuring surrounding healthy tissue. This is particularly significant in the brain, where approximately 80% of malignant cancers recur at the edges of the surgical site. Current technology, such as magnetic resonance imaging (MRI) can distinguish tumors from healthy tissue only if more than 1 million cancer cells are present. But Cy5.5 can identify tumors with as few as 2000 cancer cells, making it 500 times more sensitive than MRI.

"My greatest hope is that tumor paint will fundamentally improve cancer therapy,” said James M. Olson, MD, PhD, of Seattle Children’s Hospital and The Hutchison Center who is the senior author of the study. “By allowing surgeons to see cancer that would be undetectable by other means, we can give our patients better outcomes.”

Olson led the team that included neurosurgeons, engineers and biologists. The bioconjugate, Chlorotoxin:Cy5.5 which, when injected, emits a near-infrared light, was created in his laboratory at the Hutchinson Center. In mouse models, the team demonstrated that they could light up brain tumors as small as 1 millimeter in diameter without lighting up the surrounding normal brain tissue. In a prostate cancer model, as few as 200 cancer cells traveling in a mouse lymph channel could be detected.

Chlorotoxin:Cy5.5 is applicable to many cancers, but is especially helpful to surgeons operating on brain tumors. Not only would it reveal whether they’d left behind any bits of tumor, it would also help them avoid removing normal tissue. Chlorotoxin:Cy5.5 activates within hours and it begins binding to cancer cells within minutes. The Chlorotoxin:Cy5.5 signal lasts for 14 days, illuminating cancer cells. Contrast agents currently in use only last for a few minutes.

“I feel fortunate to be working with gifted scientists to bring this revolutionary imaging technique from the laboratory to the bedside,” said Richard Ellenbogen, MD, Pediatric Neurosurgeon, Seattle Children's Hospital and co-investigator on the study. “This development has the potential to save lives and make brain tumor resection safer.”

Surgery remains a primary form of cancer therapy. Despite advances in surgical tools, surgeons currently rely on color, texture or blood supply to differentiate tumor from normal tissue, a distinction that is often subtle and imperfect. The limitations of this method contribute to cancer growth or patient mortality that is potentially preventable. The tumor painting technique combines a visual guide for the surgeon with the potential for significant improvement in accuracy and safety.

Tumor painting has been successfully tested in mice and the pilot safety trials are complete. Olson and his team are preparing the necessary toxicity studies before seeking approval from the Food and Drug Administration to begin clinical trials. Chlorotoxin:Cy5.5 could be used in operating rooms in as little as 18 months. All clinical studies will have consenting adult participants.

Olson and his team believe that Chlorotoxin:Cy5.5 has the potential to be used in the future as a non-invasive screening tool for early detection of skin, cervical, esophageal, colon and lung cancers. It is also useful in identifying positive lymph nodes which could mean a significant advancement for breast, prostate and testicular cancers.

Jennifer Seymour | EurekAlert!
Further information:
http://www.seattlechildrens.org
http://research.seattlechildrens.org/

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

International Workshop Sees Central Role for Solar in Transforming the World Energy Economy

28.05.2018 | Seminars Workshops

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>