Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor painting revolutionizes fight against cancer

17.07.2007
Researchers develop Chlorotoxin:Cy5.5 enabling surgeons to see cancer cells 500 times better than an MRI

A tumor paint developed by researchers at Seattle Children’s Hospital Research Institute and Fred Hutchinson Cancer Research Center will help surgeons see where a tumor begins and ends more precisely by illuminating the cancerous cells. The study, published in the July 15, 2007 issue of Cancer Research, shows that the tumor paint can help surgeons distinguish between cancer cells and normal brain tissue in the operating room. The paint is a scorpion-derived peptide called chlorotoxin that is linked to the molecular beacon Cy5.5.Until now there has been no way to allow surgeons to see tumors “live” during surgery.

Chlorotoxin:Cy5.5 is a fluorescent molecular beacon that emits photons in the near infrared spectrum. This illumination gives surgeons a better chance of removing all of the cancerous cells during surgery without injuring surrounding healthy tissue. This is particularly significant in the brain, where approximately 80% of malignant cancers recur at the edges of the surgical site. Current technology, such as magnetic resonance imaging (MRI) can distinguish tumors from healthy tissue only if more than 1 million cancer cells are present. But Cy5.5 can identify tumors with as few as 2000 cancer cells, making it 500 times more sensitive than MRI.

"My greatest hope is that tumor paint will fundamentally improve cancer therapy,” said James M. Olson, MD, PhD, of Seattle Children’s Hospital and The Hutchison Center who is the senior author of the study. “By allowing surgeons to see cancer that would be undetectable by other means, we can give our patients better outcomes.”

Olson led the team that included neurosurgeons, engineers and biologists. The bioconjugate, Chlorotoxin:Cy5.5 which, when injected, emits a near-infrared light, was created in his laboratory at the Hutchinson Center. In mouse models, the team demonstrated that they could light up brain tumors as small as 1 millimeter in diameter without lighting up the surrounding normal brain tissue. In a prostate cancer model, as few as 200 cancer cells traveling in a mouse lymph channel could be detected.

Chlorotoxin:Cy5.5 is applicable to many cancers, but is especially helpful to surgeons operating on brain tumors. Not only would it reveal whether they’d left behind any bits of tumor, it would also help them avoid removing normal tissue. Chlorotoxin:Cy5.5 activates within hours and it begins binding to cancer cells within minutes. The Chlorotoxin:Cy5.5 signal lasts for 14 days, illuminating cancer cells. Contrast agents currently in use only last for a few minutes.

“I feel fortunate to be working with gifted scientists to bring this revolutionary imaging technique from the laboratory to the bedside,” said Richard Ellenbogen, MD, Pediatric Neurosurgeon, Seattle Children's Hospital and co-investigator on the study. “This development has the potential to save lives and make brain tumor resection safer.”

Surgery remains a primary form of cancer therapy. Despite advances in surgical tools, surgeons currently rely on color, texture or blood supply to differentiate tumor from normal tissue, a distinction that is often subtle and imperfect. The limitations of this method contribute to cancer growth or patient mortality that is potentially preventable. The tumor painting technique combines a visual guide for the surgeon with the potential for significant improvement in accuracy and safety.

Tumor painting has been successfully tested in mice and the pilot safety trials are complete. Olson and his team are preparing the necessary toxicity studies before seeking approval from the Food and Drug Administration to begin clinical trials. Chlorotoxin:Cy5.5 could be used in operating rooms in as little as 18 months. All clinical studies will have consenting adult participants.

Olson and his team believe that Chlorotoxin:Cy5.5 has the potential to be used in the future as a non-invasive screening tool for early detection of skin, cervical, esophageal, colon and lung cancers. It is also useful in identifying positive lymph nodes which could mean a significant advancement for breast, prostate and testicular cancers.

Jennifer Seymour | EurekAlert!
Further information:
http://www.seattlechildrens.org
http://research.seattlechildrens.org/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>