Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor painting revolutionizes fight against cancer

17.07.2007
Researchers develop Chlorotoxin:Cy5.5 enabling surgeons to see cancer cells 500 times better than an MRI

A tumor paint developed by researchers at Seattle Children’s Hospital Research Institute and Fred Hutchinson Cancer Research Center will help surgeons see where a tumor begins and ends more precisely by illuminating the cancerous cells. The study, published in the July 15, 2007 issue of Cancer Research, shows that the tumor paint can help surgeons distinguish between cancer cells and normal brain tissue in the operating room. The paint is a scorpion-derived peptide called chlorotoxin that is linked to the molecular beacon Cy5.5.Until now there has been no way to allow surgeons to see tumors “live” during surgery.

Chlorotoxin:Cy5.5 is a fluorescent molecular beacon that emits photons in the near infrared spectrum. This illumination gives surgeons a better chance of removing all of the cancerous cells during surgery without injuring surrounding healthy tissue. This is particularly significant in the brain, where approximately 80% of malignant cancers recur at the edges of the surgical site. Current technology, such as magnetic resonance imaging (MRI) can distinguish tumors from healthy tissue only if more than 1 million cancer cells are present. But Cy5.5 can identify tumors with as few as 2000 cancer cells, making it 500 times more sensitive than MRI.

"My greatest hope is that tumor paint will fundamentally improve cancer therapy,” said James M. Olson, MD, PhD, of Seattle Children’s Hospital and The Hutchison Center who is the senior author of the study. “By allowing surgeons to see cancer that would be undetectable by other means, we can give our patients better outcomes.”

Olson led the team that included neurosurgeons, engineers and biologists. The bioconjugate, Chlorotoxin:Cy5.5 which, when injected, emits a near-infrared light, was created in his laboratory at the Hutchinson Center. In mouse models, the team demonstrated that they could light up brain tumors as small as 1 millimeter in diameter without lighting up the surrounding normal brain tissue. In a prostate cancer model, as few as 200 cancer cells traveling in a mouse lymph channel could be detected.

Chlorotoxin:Cy5.5 is applicable to many cancers, but is especially helpful to surgeons operating on brain tumors. Not only would it reveal whether they’d left behind any bits of tumor, it would also help them avoid removing normal tissue. Chlorotoxin:Cy5.5 activates within hours and it begins binding to cancer cells within minutes. The Chlorotoxin:Cy5.5 signal lasts for 14 days, illuminating cancer cells. Contrast agents currently in use only last for a few minutes.

“I feel fortunate to be working with gifted scientists to bring this revolutionary imaging technique from the laboratory to the bedside,” said Richard Ellenbogen, MD, Pediatric Neurosurgeon, Seattle Children's Hospital and co-investigator on the study. “This development has the potential to save lives and make brain tumor resection safer.”

Surgery remains a primary form of cancer therapy. Despite advances in surgical tools, surgeons currently rely on color, texture or blood supply to differentiate tumor from normal tissue, a distinction that is often subtle and imperfect. The limitations of this method contribute to cancer growth or patient mortality that is potentially preventable. The tumor painting technique combines a visual guide for the surgeon with the potential for significant improvement in accuracy and safety.

Tumor painting has been successfully tested in mice and the pilot safety trials are complete. Olson and his team are preparing the necessary toxicity studies before seeking approval from the Food and Drug Administration to begin clinical trials. Chlorotoxin:Cy5.5 could be used in operating rooms in as little as 18 months. All clinical studies will have consenting adult participants.

Olson and his team believe that Chlorotoxin:Cy5.5 has the potential to be used in the future as a non-invasive screening tool for early detection of skin, cervical, esophageal, colon and lung cancers. It is also useful in identifying positive lymph nodes which could mean a significant advancement for breast, prostate and testicular cancers.

Jennifer Seymour | EurekAlert!
Further information:
http://www.seattlechildrens.org
http://research.seattlechildrens.org/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>