Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood test - without blood testing

09.07.2007
A “bilirubin analyzer” has been developed to measure the bilirubin level in blood in a noninvasive way without piercing the skin. The device, shown at the “High Technologies of the 21st Century” exhibition in Moscow, attracted the attention of both visitors and specialists.

Specialists at the Scientific Research Institute “AGAT”, located in the town of Zhukovsky, in the Moscow Region, applied a small device to the inside of the palm and identified the required value with a touch of a button. The small device, the size of a telephone receiver, is a two-channel spectrophotometer, which determines the absorption or irradiation of light of a definite wavelength. It operates as follows.

A fibreoptic block is tightly pressed to the skin, usually on the inside of the palm because the skin is thinner here and has less pigmentation. The flashbulb light travels along the optical fiber onto the body surface, where it is partly reflected and partly absorbed by the top layers of the skin and also by the blood. Bilirubin absorbs and reflects specific wavelengths of light which can then be measured.

This reflected, or more precisely, diffusely reflected (i.e. dispersed by tissue) signal travels via the other optical fibre into photoelectric receptors. It then passes through two channels with a light filter set at 460 and 550 nanometer wavelengths. Two channels allow comparison of reflected radiation at two wavelengths. The device rejects the background radiation to leave behind the bilirubin signal.

The device can determine the bilirubin concentration in the blood from zero to 400 micromoles per litre, where 400 is the highest value possible in cases of extreme jaundice. The device including batteries weighs 470 grams and takes just over a minute to measure one reading and prepare for the next. This analyzer is ideal to check large groups of the population for jaundice and as no injections are involved, there is no opportunity to transmit infections between patients.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>