Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miniature robot for precise positioning and targeting in keyhole neurosurgery wins Kaye Award for Hebrew University researcher

05.06.2007
While recent advances in neurosurgery have made it possible to precisely target areas in the brain with minimum invasiveness -- using a small hole to insert a probe, needle or catheter -- there remains a disadvantage. The small size of the openings reduces or eliminates direct site visibility and requires greater dexterity, stability and precision by the surgeon.

Now, an invention by a Hebrew University of Jerusalem researcher has made it possible to retain the advances of such keyhole surgery through utilization of the “services” of a tiny robot that can guide surgical procedures with great accuracy. For this development, Prof. Leo Joskowicz of the School of Engineering and Computer Science at the Hebrew University has been named one of this year’s winners of a Kaye Innovation Award, to be presented on June 6 during the Hebrew University’s 70th Board of Governors meeting. Prof. Joskowicz is the founder of the Computer-Aided Surgery and Medical Image Processing Laboratory at the Hebrew University, which he heads to this day.

Although keyhole brain surgery, based on preoperative CT or MRI images, has obvious advantages for the patient, misplacement of the surgical instrument in these procedures may result in hemorrhage and severe neurological complications.

To overcome this problem, Prof. Joskowicz and his associates have developed a novel, image-guided system for precise, automatic targeting of structures inside the brain. The system is based on a miniature robot that can be programmed with detailed information obtained from preoperative electronic scans of the patient.

During surgery, the robot is directly affixed to a head clamp or to the patient's skull. It automatically positions itself with great accuracy in respect to the surgical targets. Once positioned, the robot locks itself in place and serves as a guide for insertion by the surgeon of a needle, probe, or catheter to carry out the procedure.

The main advantages of the system are the reduced pain for the patient, its compactness and ease of use, and its applicability to a wide variety of neurosurgical procedures.

The system was developed jointly by Prof. Joskowicz with Ph.D. students Ruby Shamir and Moti Freiman of the School of Engineering and Computer Science at the Hebrew University; Prof. Moshe Shoham of the Department of Mechanical Engineering at the Technion-Israel Institute of Technology; Dr. Yigal Shoshan and Prof. Felix Umansky, of the Department of Neurosurgery at Hadassah Hebrew University Medical Center.

The two-year project was funded by a grant from the Israel Ministry of Trade and Industry through Yissum, the technology transfer company of the Hebrew University, which has commercialized it for product development by Mazor Surgical Technologies, Israel.

The Kaye Innovation Awards at the Hebrew University have been awarded annually since 1994. Isaac Kaye of England, a prominent industrialist in the pharmaceutical industry, established the awards to encourage faculty, staff, and students of the University to develop innovative methods and inventions with good commercial potential which have benefited or will benefit the University and society.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>