Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

pHLIP, a novel technology to locate and treat tumors

03.05.2007
Research teams at Yale University and the University of Rhode Island have demonstrated a new way to target and potentially treat tumors using a short piece of protein that acts like a nanosyringe to deliver “tags” or therapy to cells, according to a report in the Proceedings of the National Academy of Sciences.

The researchers show that, the protein fragment, called “pHLIP” (pH (Low) Insertion Peptide) can be injected into the abdomen of a mouse, find its way into the blood and then specifically accumulate in tumors. Within 20 hours after injection of labeled pHLIP, the molecules had passed through the bloodstream and accumulated in human breast tumors grown to different “stages” on the leg of a mouse.

The researchers demonstrated that by attaching fluorescent probes to a pHLIP peptide, tumors could be detected. They expect that by attaching and delivering active agents with pHLIP, that tumors may be able to be treated. Targeting is based on the fact that most tumors, even very small ones, are acidic as a result of the way they grow.

“Since the mechanism is general, and since even very small tumors can be targeted, there is an exciting array of possible applications for pHLIP,” said Donald Engelman, Eugene Higgins Professor of Molecular Biophysics & Biochemistry at Yale and a co-author of the paper.

“Andreev and Reshetnyak [co-authors of the paper] have taken a recent discovery from our lab and we are pushing hard as a team to test possible applications,” said Engelman. “We are very excited by the possibilities for both imaging and treating tumors.”

The pHLIP molecule has three states: soluble in water, bound to the surface of a membrane, and inserted across the membrane as an alpha-helix. Under normal tissue conditions of neutral pH, the water-soluble form is favored. At acidic pH, the transmembrane alpha-helix predominates.

An earlier paper from the same groups shows that at low pH, pHLIP can move cell-impermeable molecules across a cell membrane, where they are released in the cytoplasm. “pHLIP acts as a molecular nanosyringe, inserting itself into the cell membrane and injecting compounds into cell,” said co-author Yana Reshetnyak, of the University of Rhode Island. “The transported molecules can be therapeutic or toxic to the cell, depending on the intended outcome—for treating cancer, the idea is to cause cell death.”

In addition to targeting tumors, other disease states that produce inflammation and cause tissue to be acidic are a target for pHLIP. “Acidosis is a physiological marker of many diseases — and pHLIP feels acidity,” said Reshetnyak. “Therefore, pHLIP could also be used for monitoring of disease development and therapeutic outcomes. It might play very important role in the study of arthritis, ischemia and stroke.”

Lead author Oleg Andreev said, “We believe that universal medical tests to reveal many health problems at earlier stages may be developed based on pHLIP technology”

“Our discovery is an example of the reason that the NIH and DOD support basic science—we were working on the principles of membrane protein folding, and made a discovery with important medical implications that wouldn’t have happened without the ideas and approaches used in that work,” Engelman said.

Among the applications the team is actively pursuing are PET imaging of tumors, treatment of breast cancer, and alternative designs using the principles they have already established.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>