Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

pHLIP, a novel technology to locate and treat tumors

03.05.2007
Research teams at Yale University and the University of Rhode Island have demonstrated a new way to target and potentially treat tumors using a short piece of protein that acts like a nanosyringe to deliver “tags” or therapy to cells, according to a report in the Proceedings of the National Academy of Sciences.

The researchers show that, the protein fragment, called “pHLIP” (pH (Low) Insertion Peptide) can be injected into the abdomen of a mouse, find its way into the blood and then specifically accumulate in tumors. Within 20 hours after injection of labeled pHLIP, the molecules had passed through the bloodstream and accumulated in human breast tumors grown to different “stages” on the leg of a mouse.

The researchers demonstrated that by attaching fluorescent probes to a pHLIP peptide, tumors could be detected. They expect that by attaching and delivering active agents with pHLIP, that tumors may be able to be treated. Targeting is based on the fact that most tumors, even very small ones, are acidic as a result of the way they grow.

“Since the mechanism is general, and since even very small tumors can be targeted, there is an exciting array of possible applications for pHLIP,” said Donald Engelman, Eugene Higgins Professor of Molecular Biophysics & Biochemistry at Yale and a co-author of the paper.

“Andreev and Reshetnyak [co-authors of the paper] have taken a recent discovery from our lab and we are pushing hard as a team to test possible applications,” said Engelman. “We are very excited by the possibilities for both imaging and treating tumors.”

The pHLIP molecule has three states: soluble in water, bound to the surface of a membrane, and inserted across the membrane as an alpha-helix. Under normal tissue conditions of neutral pH, the water-soluble form is favored. At acidic pH, the transmembrane alpha-helix predominates.

An earlier paper from the same groups shows that at low pH, pHLIP can move cell-impermeable molecules across a cell membrane, where they are released in the cytoplasm. “pHLIP acts as a molecular nanosyringe, inserting itself into the cell membrane and injecting compounds into cell,” said co-author Yana Reshetnyak, of the University of Rhode Island. “The transported molecules can be therapeutic or toxic to the cell, depending on the intended outcome—for treating cancer, the idea is to cause cell death.”

In addition to targeting tumors, other disease states that produce inflammation and cause tissue to be acidic are a target for pHLIP. “Acidosis is a physiological marker of many diseases — and pHLIP feels acidity,” said Reshetnyak. “Therefore, pHLIP could also be used for monitoring of disease development and therapeutic outcomes. It might play very important role in the study of arthritis, ischemia and stroke.”

Lead author Oleg Andreev said, “We believe that universal medical tests to reveal many health problems at earlier stages may be developed based on pHLIP technology”

“Our discovery is an example of the reason that the NIH and DOD support basic science—we were working on the principles of membrane protein folding, and made a discovery with important medical implications that wouldn’t have happened without the ideas and approaches used in that work,” Engelman said.

Among the applications the team is actively pursuing are PET imaging of tumors, treatment of breast cancer, and alternative designs using the principles they have already established.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>