Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular signature may identify cisplatin-sensitive breast tumors

20.04.2007
Protein interaction underlies treatment-resistant tumor, findings lead to new clinical trial

Researchers at the Massachusetts General Hospital (MGH) Cancer Center have identified a subgroup of hard-to-treat breast cancers that may be sensitive to the drug cisplatin, rarely used in the treatment of breast tumors. They also have discovered the molecular basis of this sensitivity, which may help identify patients most likely to benefit from cisplatin treatment. The findings will be tested in a clinical trial anticipated to begin at the MGH Gillette Center for Breast Cancer and collaborating institutions later this spring.

"This paper describes a specific molecular pathway that makes these tumors sensitive to a therapy infrequently used for breast cancer," says Leif Ellisen, MD, PhD, of the MGH Cancer Center, senior author of the study to appear in the May 2007 Journal of Clinical Investigation and receiving early online release. "We’re excited that this work has led to the design of a clinical trial for women with a very difficult to treat form of breast cancer."

About two thirds of breast cancers contain receptor molecules for the hormones estrogen or progesterone, and in recent years antiestrogen drugs like tamoxifen have improved outcomes for women with those tumors. About 20 to 30 percent of tumors, some with hormone receptors, have elevated levels of a growth-promoting protein called HER2, and those tumors are candidates for treatment with the monoclonal antibody Herceptin. The third major subtype is the 15 to 20 percent of breast tumors that have neither estrogen nor progesterone receptors and also do not overexpress HER2.

Since these so-called "triple-negative" tumors are treatable with neither Herceptin nor antiestrogen drugs, the prognosis for patients with the tumors has been poor. Triple-negative tumors are the most common subtype found in patients with mutations in the BRCA1 gene, but they also appear in women without alterations in the so-called "breast cancer gene." There have been reports that BRCA1-associated, triple-negative tumors might be sensitive to cisplatin, a drug used to treat several other types of cancer, but whether the more common sporadic triple-negative tumors shared that sensitivity was unknown. The current study was designed to answer that question and to investigate the mechanism underlying cisplatin sensitivity.

The research team focused on the function of p63, a protein that plays a role in normal breast development and is related to the common tumor suppressor p53. They analyzed tissue samples from triple-negative breast tumors and normal breast tissues for the expression of several forms of p63 and another related protein called p73, known to promote the cell-death process called apoptosis.

The researchers found that a significant number of triple-negative tumors overexpress particular forms of p63 and p73, a pattern not seen in other types of breast cancers. Using an RNA interference system to inhibit the action of p63, they showed that the protein stimulates tumor growth by interfering with p73’s normal ability to induce cell death. Cisplatin was found to break up the binding of p63 to p73 and reactivate the cell-death process.

"The most important finding was that, if the tumor cells did not express both p63 and p73, the cells were not sensitive to cisplatin," says Ellisen. "These results suggest that testing p63 and p73 levels in patients’ tumors might help predict whether they would benefit from cisplatin therapy." Ellisen is an assistant professor of Medicine at Harvard Medical School.

The clinical trial to investigate the role of p63/p73 expression in determining cisplatin sensitivity will be led by MGH researchers through the Dana-Farber/Harvard Cancer Center. Starting in Boston in the coming weeks, the trial will be open to patient with advanced triple-negative breast cancer and eventually will be offered at other U.S. cancer research centers. Patients or physicians interested in the trial should call Karleen Habin at (617) 726-1922 and ask about the cisplatin trial for breast cancer.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>