Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular signature may identify cisplatin-sensitive breast tumors

20.04.2007
Protein interaction underlies treatment-resistant tumor, findings lead to new clinical trial

Researchers at the Massachusetts General Hospital (MGH) Cancer Center have identified a subgroup of hard-to-treat breast cancers that may be sensitive to the drug cisplatin, rarely used in the treatment of breast tumors. They also have discovered the molecular basis of this sensitivity, which may help identify patients most likely to benefit from cisplatin treatment. The findings will be tested in a clinical trial anticipated to begin at the MGH Gillette Center for Breast Cancer and collaborating institutions later this spring.

"This paper describes a specific molecular pathway that makes these tumors sensitive to a therapy infrequently used for breast cancer," says Leif Ellisen, MD, PhD, of the MGH Cancer Center, senior author of the study to appear in the May 2007 Journal of Clinical Investigation and receiving early online release. "We’re excited that this work has led to the design of a clinical trial for women with a very difficult to treat form of breast cancer."

About two thirds of breast cancers contain receptor molecules for the hormones estrogen or progesterone, and in recent years antiestrogen drugs like tamoxifen have improved outcomes for women with those tumors. About 20 to 30 percent of tumors, some with hormone receptors, have elevated levels of a growth-promoting protein called HER2, and those tumors are candidates for treatment with the monoclonal antibody Herceptin. The third major subtype is the 15 to 20 percent of breast tumors that have neither estrogen nor progesterone receptors and also do not overexpress HER2.

Since these so-called "triple-negative" tumors are treatable with neither Herceptin nor antiestrogen drugs, the prognosis for patients with the tumors has been poor. Triple-negative tumors are the most common subtype found in patients with mutations in the BRCA1 gene, but they also appear in women without alterations in the so-called "breast cancer gene." There have been reports that BRCA1-associated, triple-negative tumors might be sensitive to cisplatin, a drug used to treat several other types of cancer, but whether the more common sporadic triple-negative tumors shared that sensitivity was unknown. The current study was designed to answer that question and to investigate the mechanism underlying cisplatin sensitivity.

The research team focused on the function of p63, a protein that plays a role in normal breast development and is related to the common tumor suppressor p53. They analyzed tissue samples from triple-negative breast tumors and normal breast tissues for the expression of several forms of p63 and another related protein called p73, known to promote the cell-death process called apoptosis.

The researchers found that a significant number of triple-negative tumors overexpress particular forms of p63 and p73, a pattern not seen in other types of breast cancers. Using an RNA interference system to inhibit the action of p63, they showed that the protein stimulates tumor growth by interfering with p73’s normal ability to induce cell death. Cisplatin was found to break up the binding of p63 to p73 and reactivate the cell-death process.

"The most important finding was that, if the tumor cells did not express both p63 and p73, the cells were not sensitive to cisplatin," says Ellisen. "These results suggest that testing p63 and p73 levels in patients’ tumors might help predict whether they would benefit from cisplatin therapy." Ellisen is an assistant professor of Medicine at Harvard Medical School.

The clinical trial to investigate the role of p63/p73 expression in determining cisplatin sensitivity will be led by MGH researchers through the Dana-Farber/Harvard Cancer Center. Starting in Boston in the coming weeks, the trial will be open to patient with advanced triple-negative breast cancer and eventually will be offered at other U.S. cancer research centers. Patients or physicians interested in the trial should call Karleen Habin at (617) 726-1922 and ask about the cisplatin trial for breast cancer.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>