Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress toward a targeted therapy for a specific form of leukemia

16.04.2007
Leukemia, or cancer of the bone marrow, strikes some 700 Belgians each year. Scientists are still searching for the cause of many forms of leukemia, including T-cell acute lymphoblastic leukemia, or T-ALL. Now, VIB researchers connected to the Katholieke Universiteit Leuven have identified a new player in the development of some 10% of the T-ALL cases: MYB.

The scientists have discovered that patients in this group have a duplication of the MYB gene, which increases MYB concentrations. Further research has indicated that MYB might well be an important target for therapies for this group of T-ALL patients.

T-cell acute lymphoblastic leukemia (T-ALL)

Our bodies’ white blood cells combat foreign intruders such as viruses and bacteria. However, in leukemia, the formation of white blood cells is disrupted. The cells in the bone marrow that should develop into white blood cells multiply out of control without fully maturing. These blood cells do not function properly and thus jeopardize the production of normal blood cells. Among other consequences, this makes patients more susceptible to infections. T-ALL is a certain form of leukemia in which immature T-cells (a specific type of blood cells) build up very rapidly. T-ALL is the most prevalent form of cancer in children under 14 years of age, striking children between the ages of 2 and 3 in particular. Today, with optimal treatment using chemotherapy, more than half of the children are cured.

Combined action of several players

The search for the mechanisms that cause T-ALL goes on ceaselessly. Discovering these mechanisms will enable the development of targeted therapies, which are preferred over chemotherapy. Scientists know that T-ALL arises only when defects occur in several genes simultaneously. So it is not only important to identify the genes that underlie T-ALL, but also to discover which combinations trigger the disease. This is an important step in the development of specific combination therapies, which are much more effective than therapies that focus on just one target.

A new player

Idoya Lahortiga and Jan Cools in Peter Marynen’s group, working with colleagues from Ghent (Belgium) and Rotterdam (the Netherlands), have recently identified MYB as a major player in certain T-ALL cases. Studying the DNA of 107 patients, they found that the MYB gene was duplicated in 9 of them. This duplication results in increased MYB concentrations. The MYB transcription factor is important for the proliferation, survival and differentiation of the precursor cells that precede the formation of blood cells. Scientists also know that MYB is involved in several other forms of cancer.

On the way to a new therapy

The researchers are convinced that MYB can be an important target for the development of a new therapy for T-ALL. They are particularly encouraged by the results they obtained when they suppressed the expression of MYB in T-ALL cell lines. This produced a limited - but therapeutically significant - effect on the cancer cells.

They also obtained a much more significant effect by suppressing two genes at the same time: MYB and NOTCH1. NOTCH1 has recently been identified as an important factor in the development of nearly 70% of T-ALL cases. The effect of inhibiting NOTCH1 is currently being tested on T-ALL patients. This is going very well, but the NOTCH1 inhibitors turn out to have toxic side effects, whereby some patients have to stop the treatment. The results from the VIB researchers in Leuven now demonstrate that the combined inhibition of NOTCH1 and MYB in T-ALL cell lines is very effective. These results raise hopes that scientists will be able to develop a very effective combination therapy - in which the concentration of the toxic NOTCH1 inhibitors is reduced - for the group of patients in which MYB and NOTCH1 play a role. The quest for this therapy will also be a part of the further research efforts of Lahortiga, Cools and Marynen.

Ann Van Gysel | alfa
Further information:
http://www.vib.be

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>