Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastic limb splint could provide instant treatment for broken bones

20.03.2007
Extreme sports fans could soon have instant medical treatment for broken limbs that occur in remote locations, following the design of a unique, versatile portable plastic splint, which has won an international design award.

The pioneering First Aid Splint is designed to protect and aid the recovery of damaged bones when the patient is in isolated conditions that are difficult to reach by medical teams and should provide aid to the 45,000 victims of snow sport injuries which occur every year.

The splint applies rigidness and heat quickly to the limb via a special gel created by a chemically reactive metal strip and saturated sodium acetate solution. It was devised as part of an international collaboration between Sheffield Hallam University and the Institut Superieur de Plasturgie d'Alencon (ISPA), France, to explore the lightweight, pliable properties of plastic.

MA Industrial Design students at Sheffield Hallam University, Ching-Sui Kao, from Taiwan and Geremi Durand, from St Ettiene, France, joined engineering student Maxime Ducloux from the ISPA plastic centre of excellence to design the First Aid Splint, which incorporates essential medical treatment with convenience.

The innovative splint was conceived as part of a Design and Innovation in Plasturgy competition to design an object where the main element in plastic. The only UK representatives, Sheffield Hallam University, scooped two of four prizes in the February biannual competition, including the Jury's Grand prize for the First Aid Splint, beating over forty submissions.

Paul Chamberlain, professor of design at Sheffield Hallam University said: "Plastic has surprising uses that are not currently being explored and this competition is a great way to start exploring those possibilities.

"It's a great honour that the innovation and quality of design from our students has allowed them to walk away with half of the available prizes in an international competition. This acclaim is great news for their future careers and employability.

"The experience of working in overseas partnerships has also been invaluable in increasing their skills in team work, international communication, distance working and appreciating cultural differences."

Six teams of two Sheffield Hallam University students, and one ISPA, also addressed the social stigma of mobility aids for users and ways to increase their lifestyle appeal. Winning the category of Plastic on Us, a trophy and E5,000, the team exploited new materials to provide new features and forms for walking aids in the form of O'Leg. Students Jonathan Grant, from Cambridge and Faustine Le Berre from Annecy, France have created a fashionable, adjustable and lightweight support to appeal to sports enthusiasts and a growing aging population.

Two other competition categories, sponsored by the French Plastic Industry, included Plastic in the Home and Plastic Around Us.

The innovative designs are currently available for viewing in Alencon in France, and although in its initial stage, projects are seeking funding and development opportunities.

Lorna Branton | alfa
Further information:
http://www.shu.ac.uk

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>