Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarkers warn of impending injury from repetitive motion

08.03.2007
For the first time in humans, scientists have found early indicators of inflammation — potential warning signs — in work-related injuries caused by repetitive motion.

Their findings could someday lead to early detection and prevention of debilitating conditions such as carpal tunnel syndrome and tendonitis.

The new study from Temple University senior researchers Ann Barr and Mary Barbe and their doctoral student, Stephen Carp, in the March issue of Clinical Science, found that the immune system pumps out biomarkers (different kinds of chemicals) as the body begins to become injured by repetitive motions. These biomarkers warn of an underlying problem.

“While not a diagnostic test, because the biomarkers could also indicate another type of injury, they do provide a red flag where before there was none,” said Barr, associate professor of physical therapy at Temple’s College of Health Professions.

Currently, healthcare providers can diagnose repetitive motion injuries (RMI) based only on physical examination findings and the symptoms reported by the patient.

Typically, RMI sufferers don’t experience symptoms of pain until the damage has begun. So the researchers’ main goal has been finding a means to detect the problem before the damage starts. That way, conservative intervention — ibuprofen, rest breaks at work, exercise — can be evaluated as to their effectiveness in preventing the development of chronic work-related conditions and, consequently, the need for more serious measures such as surgery.

“If the injury to the tissues can be halted, then hopefully long-term damage and impairment can be avoided,” said Barbe, also an associate professor of physical therapy.

Employers and workers know the dramatic impact of RMIs, which cause pain, loss of function and close to a third of missed workdays in the United States, at a cost of $20 billion a year in workers’ compensation.

In previous studies, the researchers pinpointed these early warning signals in a rat model of RMI. The current study is the first to identify the warning signals in humans.

For the study, they recruited 22 participants who were suffering from repetitive-stress injuries, including carpal tunnel syndrome, tendonitis, and other wrist and shoulder injuries, and nine healthy subjects. After a physical examination that rated the severity of symptoms ranging from pain to range of motion, participants were given blood tests for evidence of biomarkers.

“The blood tests revealed significant levels of several types of inflammatory mediators — biomarkers — which signaled an underlying problem,” said Barr. “Also, the more severe the injury, the more biomarkers there were.”

Future research by the team will look deeper into the potential of biomarkers as indicators of injury and recovery.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>