Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forsyth scientists make major discovery to advance regenerative medicine

01.03.2007
First clues into the genetic source of natural electrical signals governing regeneration of nerve and muscle

Scientists at Forsyth may have moved one step closer to regenerating human spinal cord tissue by artificially inducing a frog tadpole to re-grow its tail at a stage in its development when it is normally impossible. Using a variety of methods including a kind of gene therapy, the scientists altered the electrical properties of cells thus inducing regeneration. This discovery may provide clues about how bioelectricity can be used to help humans regenerate.

This study, for the first time, gave scientists a direct glimpse of the source of natural electric fields that are crucial for regeneration, as well as revealing how these are produced. In addition, the findings provide the first detailed mechanistic synthesis of bioelectrical, molecular-genetic, and cell-biological events underlying the regeneration of a complex vertebrate structure that includes skin, muscle, vasculature and critically spinal cord. Although the Xenopus (frog) tadpole sometimes has the ability to re-grow its tail, there are specific times during its development that regeneration does not take place (much as human children lose the ability to regenerate finger-tips after 7 years of age). During the Forsyth study, the activity of a yeast proton pump (which produces H+ ion flow and thus sets up regions of higher and lower pH) triggered the regeneration of the frog's tail during the normally quiescent time.

This research will be published in the April issue of Development and will appear online on February 28, 2007.

According to the publication's first author, Dany Adams, Ph.D., Assistant Research Investigator at the Forsyth Institute, applied electric fields have long been known to enhance regeneration in amphibia, and in fact have led to clinical trials in human patients. "However, the molecular sources of relevant currents and the mechanisms underlying their control have remained poorly understood," said Adams. "To truly make strides in regenerative medicine, we need to understand the innate components that underlie bioelectrical events during normal development and regeneration. Our ability to stop regeneration by blocking a particular H+ pump and to induce regeneration when it is normally absent, means we have found at least one critical component."

The research team, led by Michael Levin, Ph.D., Director of the Forsyth Center for Regenerative and Developmental Biology has been using the Xenopus tadpole to study regeneration because it provides an opportunity to see how much can be done with non-embryonic (somatic) cells during regeneration, and it is a perfect model system in which to understand how movement of electric charges leads to the ability to re-grow a fully functioning tail. Furthermore, said Dr. Levin, tail regeneration in Xenopus is more likely to be similar to tissue renewal in human beings than some other regenerative model systems. The Forsyth scientists previously studied the role that apoptosis, a process of programmed cell death in multi-cellular organisms, plays in regeneration.

Michael Levin, PhD. is an Associate Member of the Staff in The Forsyth Institute Department of Cytokine Biology and the Director of the Forsyth Center for Regenerative and Developmental Biology. Through experimental approaches and mathematical modeling, Dr. Levin and his team examine the processes governing large-scale pattern formation and biological information storage during animal embryogenesis. The lab investigates mechanisms of signaling between cells and tissues that allows a living system to reliably generate and maintain a complex morphology. The Levin team studies these processes in the context of embryonic development and regeneration, with a particular focus on the biophysics of cell behavior.

Jennifer Kelly | EurekAlert!
Further information:
http://www.forsyth.org

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>