Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European project opens way for better understanding of human diseases

21.02.2002


In the edition of Nature dated Thursday 21 February 2002, an international team of scientists report their analysis of the genome of fission yeast (Schizosaccharomyces pombe). The project, largely funded through a €6.9 million from the European Commission, is likely to have major implications for the future of cancer and other bio-medical research. Fifty of the yeast genes were found to have significant similarity with genes involved in human diseases, including cystic fibrosis, hereditary deafness and non insulin dependent diabetes, and half were found to be cancer related. Because yeast cells are similar to human cells but easier to study, this work is leading to a better understanding of what each gene controls, and how they may be involved in cancer and other diseases in humans.



Research Commissioner Philippe Busquin commented this scientific breakthrough saying: "This type of research is yet another example for the strong link between scientic advancement and practical use for the citizen. Unlike other genomics projects, Europe has taken the leading role in this research through networking of the best. That is precisely what I have been advocating since the Lisbon summit in spring 2000, where I proposed to create a European Research Area."

Schizosaccharomyces pombe is known as fission yeast because it reproduces by splitting rather than by budding like Saccharomyces cerevisiae (baker`s yeast), and is occasionally used for brewing beer. Like man, it is an eukaryote, i.e. an organism that, unlike bacteria, contains its genome in a nucleus inside the cell and is generally thought to be more complex.


The completion of the sequence and analysis of this genome is the result of the joint effort of 13 European laboratories led by the Wellcome Trust Sanger Institute which sequenced two-thirds of the genome and did the gene predictions and annotation for all of the sequence. The global analysis of the genome was performed jointly by Cancer Research UK and the Sanger Institute. The second phase of the sequencing was carried out by a European Consortium led by the Sanger Institute. The consortium consisted of major European laboratories that also contributed to the S. cerevisiae genome project. The majority of funding for the project was from the European Commission (€6.9 million out of a total budget of €9.4 million).

The 133 authors of the Nature paper include Dr Paul Nurse of Cancer Research UK, whose work on fission yeast and cell division recently led to the award for the Nobel prize for Medicine, and Dr Bart Barrell and Val Wood from the Wellcome Trust Sanger Institute near Cambridge.

Dr Nurse stated: `Biomedicine depends on our study of model organisms, which can provide key insights into the way in which the more complex human genome works. The genome fission yeast is only the sixth higher (eukaryotic) life form to be decoded. Significantly, many decisions the humble yeast cell makes in cell division use genes that are closely related to genes implicated in many human cancers: this small organism could prove vital in helping to better understand and treat cancer and other diseases.`

Val Wood, from the Wellcome Trust Sanger Institute, commented: `Each step in our study of genomes brings new and surprising understanding of the common basis that underlies the way cells work. In this international collaboration we have provided high-quality sequence and precise analysis of the genes buried in the fission yeast genetic code, demonstrating the value of sharing genomic information. Through this shared effort, the genome of S. pombe is one of the best annotated of any non-bacterial cell. As well as finding cancer-related genes, we have begun to illustrate how other functions in this, perhaps the simplest complex cell, can bring new tools to understanding ourselves and our place in evolution.`

The joint effort to sequence and analyse the sequence of a micro-organism to better understand and improve human health is a typical an example of the continuing European effort in the area of Genomics and Biotechnology for Health. Building on such major achievements, the European Commission proposes to allocate €2.2 billion to this priority in the forthcoming Sixth Framework Programme (2002-2006).

Stéphane Hogan | alphagalileo
Further information:
http://www.sanger.ac.uk/Projects/S_pombe/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>