Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European project opens way for better understanding of human diseases

21.02.2002


In the edition of Nature dated Thursday 21 February 2002, an international team of scientists report their analysis of the genome of fission yeast (Schizosaccharomyces pombe). The project, largely funded through a €6.9 million from the European Commission, is likely to have major implications for the future of cancer and other bio-medical research. Fifty of the yeast genes were found to have significant similarity with genes involved in human diseases, including cystic fibrosis, hereditary deafness and non insulin dependent diabetes, and half were found to be cancer related. Because yeast cells are similar to human cells but easier to study, this work is leading to a better understanding of what each gene controls, and how they may be involved in cancer and other diseases in humans.



Research Commissioner Philippe Busquin commented this scientific breakthrough saying: "This type of research is yet another example for the strong link between scientic advancement and practical use for the citizen. Unlike other genomics projects, Europe has taken the leading role in this research through networking of the best. That is precisely what I have been advocating since the Lisbon summit in spring 2000, where I proposed to create a European Research Area."

Schizosaccharomyces pombe is known as fission yeast because it reproduces by splitting rather than by budding like Saccharomyces cerevisiae (baker`s yeast), and is occasionally used for brewing beer. Like man, it is an eukaryote, i.e. an organism that, unlike bacteria, contains its genome in a nucleus inside the cell and is generally thought to be more complex.


The completion of the sequence and analysis of this genome is the result of the joint effort of 13 European laboratories led by the Wellcome Trust Sanger Institute which sequenced two-thirds of the genome and did the gene predictions and annotation for all of the sequence. The global analysis of the genome was performed jointly by Cancer Research UK and the Sanger Institute. The second phase of the sequencing was carried out by a European Consortium led by the Sanger Institute. The consortium consisted of major European laboratories that also contributed to the S. cerevisiae genome project. The majority of funding for the project was from the European Commission (€6.9 million out of a total budget of €9.4 million).

The 133 authors of the Nature paper include Dr Paul Nurse of Cancer Research UK, whose work on fission yeast and cell division recently led to the award for the Nobel prize for Medicine, and Dr Bart Barrell and Val Wood from the Wellcome Trust Sanger Institute near Cambridge.

Dr Nurse stated: `Biomedicine depends on our study of model organisms, which can provide key insights into the way in which the more complex human genome works. The genome fission yeast is only the sixth higher (eukaryotic) life form to be decoded. Significantly, many decisions the humble yeast cell makes in cell division use genes that are closely related to genes implicated in many human cancers: this small organism could prove vital in helping to better understand and treat cancer and other diseases.`

Val Wood, from the Wellcome Trust Sanger Institute, commented: `Each step in our study of genomes brings new and surprising understanding of the common basis that underlies the way cells work. In this international collaboration we have provided high-quality sequence and precise analysis of the genes buried in the fission yeast genetic code, demonstrating the value of sharing genomic information. Through this shared effort, the genome of S. pombe is one of the best annotated of any non-bacterial cell. As well as finding cancer-related genes, we have begun to illustrate how other functions in this, perhaps the simplest complex cell, can bring new tools to understanding ourselves and our place in evolution.`

The joint effort to sequence and analyse the sequence of a micro-organism to better understand and improve human health is a typical an example of the continuing European effort in the area of Genomics and Biotechnology for Health. Building on such major achievements, the European Commission proposes to allocate €2.2 billion to this priority in the forthcoming Sixth Framework Programme (2002-2006).

Stéphane Hogan | alphagalileo
Further information:
http://www.sanger.ac.uk/Projects/S_pombe/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>