Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European project opens way for better understanding of human diseases

21.02.2002


In the edition of Nature dated Thursday 21 February 2002, an international team of scientists report their analysis of the genome of fission yeast (Schizosaccharomyces pombe). The project, largely funded through a €6.9 million from the European Commission, is likely to have major implications for the future of cancer and other bio-medical research. Fifty of the yeast genes were found to have significant similarity with genes involved in human diseases, including cystic fibrosis, hereditary deafness and non insulin dependent diabetes, and half were found to be cancer related. Because yeast cells are similar to human cells but easier to study, this work is leading to a better understanding of what each gene controls, and how they may be involved in cancer and other diseases in humans.



Research Commissioner Philippe Busquin commented this scientific breakthrough saying: "This type of research is yet another example for the strong link between scientic advancement and practical use for the citizen. Unlike other genomics projects, Europe has taken the leading role in this research through networking of the best. That is precisely what I have been advocating since the Lisbon summit in spring 2000, where I proposed to create a European Research Area."

Schizosaccharomyces pombe is known as fission yeast because it reproduces by splitting rather than by budding like Saccharomyces cerevisiae (baker`s yeast), and is occasionally used for brewing beer. Like man, it is an eukaryote, i.e. an organism that, unlike bacteria, contains its genome in a nucleus inside the cell and is generally thought to be more complex.


The completion of the sequence and analysis of this genome is the result of the joint effort of 13 European laboratories led by the Wellcome Trust Sanger Institute which sequenced two-thirds of the genome and did the gene predictions and annotation for all of the sequence. The global analysis of the genome was performed jointly by Cancer Research UK and the Sanger Institute. The second phase of the sequencing was carried out by a European Consortium led by the Sanger Institute. The consortium consisted of major European laboratories that also contributed to the S. cerevisiae genome project. The majority of funding for the project was from the European Commission (€6.9 million out of a total budget of €9.4 million).

The 133 authors of the Nature paper include Dr Paul Nurse of Cancer Research UK, whose work on fission yeast and cell division recently led to the award for the Nobel prize for Medicine, and Dr Bart Barrell and Val Wood from the Wellcome Trust Sanger Institute near Cambridge.

Dr Nurse stated: `Biomedicine depends on our study of model organisms, which can provide key insights into the way in which the more complex human genome works. The genome fission yeast is only the sixth higher (eukaryotic) life form to be decoded. Significantly, many decisions the humble yeast cell makes in cell division use genes that are closely related to genes implicated in many human cancers: this small organism could prove vital in helping to better understand and treat cancer and other diseases.`

Val Wood, from the Wellcome Trust Sanger Institute, commented: `Each step in our study of genomes brings new and surprising understanding of the common basis that underlies the way cells work. In this international collaboration we have provided high-quality sequence and precise analysis of the genes buried in the fission yeast genetic code, demonstrating the value of sharing genomic information. Through this shared effort, the genome of S. pombe is one of the best annotated of any non-bacterial cell. As well as finding cancer-related genes, we have begun to illustrate how other functions in this, perhaps the simplest complex cell, can bring new tools to understanding ourselves and our place in evolution.`

The joint effort to sequence and analyse the sequence of a micro-organism to better understand and improve human health is a typical an example of the continuing European effort in the area of Genomics and Biotechnology for Health. Building on such major achievements, the European Commission proposes to allocate €2.2 billion to this priority in the forthcoming Sixth Framework Programme (2002-2006).

Stéphane Hogan | alphagalileo
Further information:
http://www.sanger.ac.uk/Projects/S_pombe/

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>