Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European project opens way for better understanding of human diseases

21.02.2002


In the edition of Nature dated Thursday 21 February 2002, an international team of scientists report their analysis of the genome of fission yeast (Schizosaccharomyces pombe). The project, largely funded through a €6.9 million from the European Commission, is likely to have major implications for the future of cancer and other bio-medical research. Fifty of the yeast genes were found to have significant similarity with genes involved in human diseases, including cystic fibrosis, hereditary deafness and non insulin dependent diabetes, and half were found to be cancer related. Because yeast cells are similar to human cells but easier to study, this work is leading to a better understanding of what each gene controls, and how they may be involved in cancer and other diseases in humans.



Research Commissioner Philippe Busquin commented this scientific breakthrough saying: "This type of research is yet another example for the strong link between scientic advancement and practical use for the citizen. Unlike other genomics projects, Europe has taken the leading role in this research through networking of the best. That is precisely what I have been advocating since the Lisbon summit in spring 2000, where I proposed to create a European Research Area."

Schizosaccharomyces pombe is known as fission yeast because it reproduces by splitting rather than by budding like Saccharomyces cerevisiae (baker`s yeast), and is occasionally used for brewing beer. Like man, it is an eukaryote, i.e. an organism that, unlike bacteria, contains its genome in a nucleus inside the cell and is generally thought to be more complex.


The completion of the sequence and analysis of this genome is the result of the joint effort of 13 European laboratories led by the Wellcome Trust Sanger Institute which sequenced two-thirds of the genome and did the gene predictions and annotation for all of the sequence. The global analysis of the genome was performed jointly by Cancer Research UK and the Sanger Institute. The second phase of the sequencing was carried out by a European Consortium led by the Sanger Institute. The consortium consisted of major European laboratories that also contributed to the S. cerevisiae genome project. The majority of funding for the project was from the European Commission (€6.9 million out of a total budget of €9.4 million).

The 133 authors of the Nature paper include Dr Paul Nurse of Cancer Research UK, whose work on fission yeast and cell division recently led to the award for the Nobel prize for Medicine, and Dr Bart Barrell and Val Wood from the Wellcome Trust Sanger Institute near Cambridge.

Dr Nurse stated: `Biomedicine depends on our study of model organisms, which can provide key insights into the way in which the more complex human genome works. The genome fission yeast is only the sixth higher (eukaryotic) life form to be decoded. Significantly, many decisions the humble yeast cell makes in cell division use genes that are closely related to genes implicated in many human cancers: this small organism could prove vital in helping to better understand and treat cancer and other diseases.`

Val Wood, from the Wellcome Trust Sanger Institute, commented: `Each step in our study of genomes brings new and surprising understanding of the common basis that underlies the way cells work. In this international collaboration we have provided high-quality sequence and precise analysis of the genes buried in the fission yeast genetic code, demonstrating the value of sharing genomic information. Through this shared effort, the genome of S. pombe is one of the best annotated of any non-bacterial cell. As well as finding cancer-related genes, we have begun to illustrate how other functions in this, perhaps the simplest complex cell, can bring new tools to understanding ourselves and our place in evolution.`

The joint effort to sequence and analyse the sequence of a micro-organism to better understand and improve human health is a typical an example of the continuing European effort in the area of Genomics and Biotechnology for Health. Building on such major achievements, the European Commission proposes to allocate €2.2 billion to this priority in the forthcoming Sixth Framework Programme (2002-2006).

Stéphane Hogan | alphagalileo
Further information:
http://www.sanger.ac.uk/Projects/S_pombe/

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>