Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Neurotex Ltd Offers New Approach to Nerve Repair

A new company, Neurotex Ltd, has been established to develop novel silk-based products that have the potential to provide a new generation of nerve repair materials and treatments. To help Neurotex Ltd. carry out its developments, a £250,000 investment has been made by The Kinetique Biomedical Seed Fund.

Neurotex Ltd is a joint venture company, bringing together the expertise of Professor John Priestley, Head of Neuroscience at Queen Mary’s School of Medicine and Dentistry, and the unique silk-based materials technology of Oxford Biomaterials Ltd.

Neurotex Ltd is developing a range of patented devices for the repair of damaged nerves using a modified wild silk developed by Oxford Biomaterials, called Spidrex. Initial studies have shown Spidrex to be highly supportive of directed nerve growth with low immunotoxicity.

Professor John Priestley, Scientific Founder of Neurotex expects that the research will lead to treatment for damaged nerves and may eventually lead to treatments for repairing damaged spinal cord.

“For us it’s an ambitious but realistic goal to repair the peripheral nervous system,” says Professor Priestley. “If you damage a peripheral nerve, so long as it has a support to follow, the nerve should regrow and hopefully the nerve injury will repair itself. If you damage the spinal cord, however, there are lots of things that will try and prevent the regrowth taking place, such as natural inhibitory components. To repair a damaged spinal cord, we will need different types of tubes and will have to combine other approaches such as stem cells, growth factors or other additives. So it’s a much longer term goal, but the rewards are potentially much greater.”

Dr Richard Skipper has been appointed Chief Executive Officer of the new company. Richard has 25 years experience in the marketing and manufacturing of aerospace, telecommunications and medical products, 16 years at board level with multi-national companies with an emphasis on producing medical devices, taking them from concept through to sales.

Richard Skipper | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>