Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Garlic hope in infection fight

Garlic has been hailed a wonder drug for centuries and has been used to prevent gangrene, treat high blood pressure, ward off common colds and is even believed by some to have cancer-fighting properties.

Now, scientists at The University of Nottingham are leading a new pilot study to see if the pungent bulb could also hold the key to preventing cystic fibrosis patients from falling foul of a potentially-fatal infection.

The research will look at whether taking garlic capsules can disrupt the communication system of the pathogen Pseudomonas to prevent illness from taking hold.

The project will unite University experts in child health, respiratory medicine and molecular microbiology with clinicians at the Nottingham University Hospitals NHS Trust.

Cystic fibrosis is an inherited condition that affects around 7,000 people in the UK, half of whom are children. The disease causes difficulties in digesting food and children may be slow to put on weight and grow properly. Both children and adults with the condition are vulnerable to repeated and chronic chest infections which damage the lungs and which may, ultimately, be fatal.

Pseudomonas aeruginosa is one of the most common causes of chronic infection in CF patients. Current treatment aims to eradicate it when it first appears. If the infection becomes established it may be suppressed with antibiotic nebulisers. However, these have a major impact on quality of life for the patient because they are time-consuming (given twice a day, every day, for life) and often the patient still has to be admitted to hospital for more intensive treatment.

During the study, half the volunteer CF patients will be given garlic capsules, while the other half will receive a placebo (olive oil capsules) over a two month period. At the beginning and end of the study, researchers will measure the levels of germs in patients' sputum samples, the patients' lung function and weight will be monitored and blood tests carried out to ensure the garlic capsules are safe.

Dr Alan Smyth of the University's School of Human Development, who is leading the project, said: “The garlic components inhibit a bacterial communication system called quorum sensing (QS). This is responsible for the germ forming tenacious colonies in the lungs called 'biofilms'. The QS molecules also switch on bacterial weapons such as 'elastase', an enzyme which breaks down elastic tissue in the lung.

“The beauty of this approach is that we may be able to render the germ harmless without killing it. If we use a conventional antibiotic which kills the Pseudomonas, there will always be some survivors, some of which may develop antibiotic resistance. The trick is not to allow Pseudomonas to use natural selection as a weapon against us.”

The study is funded by the Nottingham University Hospitals NHS Trust and The University of Nottingham, with garlic capsules supplied by the Nottingham-based company Boots.

Among Dr Smyth's collaborators on the project at The University of Nottingham are Dr David Barrett in the School of Pharmacy, Dr Alan Knox in the School of Medical and Surgical Sciences and Professor Paul Williams, Dr Miguel Camara and Dr Karima Righetti — an EU-funded Marie Curie fellow — in the School of Molecular Medical Sciences.

Dr Alan Smyth | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>