Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On automatic pilot

31.01.2007
Walking while holding a conversation and writing a letter whilst thinking about its content: we perform many actions without even thinking about them. This is possible due to the cerebellum.

It regulates the automation of our movements and as a result the cerebrum can perform other tasks. However, how the cerebellum performs this task is not clear. Dutch researcher Angelique Pijpers reconstructed a part of cerebellar functioning in rats and investigated how it mediates in the control of hind limb muscles. Such research might in future provide a better understanding of how the elderly move.

Pijpers and her colleagues investigated which processes took place inside and outside of the cerebellum: how does it channel information and process this into a signal to the muscles? Subsequently they investigated which parts of the cerebellum are involved in regulating the activity of a single muscle. Furthermore, they examined the consequences of inactivation of one or more parts of the cerebellum on the functioning of this muscle.

Nerve cells in the cerebellum receive two types of signals. Through the climbing fibres, signals from a specific structure in the brain stem are transmitted to Purkinje cells located in the cerebellar cortex. Mossy fibres transmit signals from various parts of the central nervous system to the granule cells of the cerebellar cortex.

Pijpers reconstructed the modular anatomy of the cerebellum by injecting small quantities of traceable substances. This allowed mapping of different 'stations' of the information pathway. The reconstruction revealed that the cerebellum is organised into a number of modules or connections aligned in parallel. Up until now it had been thought that the climbing fibre and mossy fibre systems were organised in completely different manners. However, according to Pijpers they also exhibit similarities.

By injecting a viral tracer agent in various muscles, the researcher traced the cerebellar modules involved in the control of a single muscle. She then inactivated one of the modules by injecting a neurotoxin. The rat's ability to walk was scarcely altered but there was a strong decrease in its ability to respond quickly to obstacles in a reflexive manner. This revealed that specific modules of the cerebellum mainly regulate reflex functions during walking and match these to the situation.

Consequences for the elderly

Pijpers' research opens up new possibilities for further research into the role of the cerebellum in the control of movements. Results from follow-up studies could be important for research into how the elderly move. For example, the increased risk of falls in the elderly is often associated with physical limitations. According to Pijpers this could also be a linked to cerebellar functioning, since certain parts of the cerebellum appear to decrease as we get older.

Angelique Pijpers' research was funded by NWO.

Dr Angelique Pijpers | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_6X6CC4_Eng

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>