Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On automatic pilot

31.01.2007
Walking while holding a conversation and writing a letter whilst thinking about its content: we perform many actions without even thinking about them. This is possible due to the cerebellum.

It regulates the automation of our movements and as a result the cerebrum can perform other tasks. However, how the cerebellum performs this task is not clear. Dutch researcher Angelique Pijpers reconstructed a part of cerebellar functioning in rats and investigated how it mediates in the control of hind limb muscles. Such research might in future provide a better understanding of how the elderly move.

Pijpers and her colleagues investigated which processes took place inside and outside of the cerebellum: how does it channel information and process this into a signal to the muscles? Subsequently they investigated which parts of the cerebellum are involved in regulating the activity of a single muscle. Furthermore, they examined the consequences of inactivation of one or more parts of the cerebellum on the functioning of this muscle.

Nerve cells in the cerebellum receive two types of signals. Through the climbing fibres, signals from a specific structure in the brain stem are transmitted to Purkinje cells located in the cerebellar cortex. Mossy fibres transmit signals from various parts of the central nervous system to the granule cells of the cerebellar cortex.

Pijpers reconstructed the modular anatomy of the cerebellum by injecting small quantities of traceable substances. This allowed mapping of different 'stations' of the information pathway. The reconstruction revealed that the cerebellum is organised into a number of modules or connections aligned in parallel. Up until now it had been thought that the climbing fibre and mossy fibre systems were organised in completely different manners. However, according to Pijpers they also exhibit similarities.

By injecting a viral tracer agent in various muscles, the researcher traced the cerebellar modules involved in the control of a single muscle. She then inactivated one of the modules by injecting a neurotoxin. The rat's ability to walk was scarcely altered but there was a strong decrease in its ability to respond quickly to obstacles in a reflexive manner. This revealed that specific modules of the cerebellum mainly regulate reflex functions during walking and match these to the situation.

Consequences for the elderly

Pijpers' research opens up new possibilities for further research into the role of the cerebellum in the control of movements. Results from follow-up studies could be important for research into how the elderly move. For example, the increased risk of falls in the elderly is often associated with physical limitations. According to Pijpers this could also be a linked to cerebellar functioning, since certain parts of the cerebellum appear to decrease as we get older.

Angelique Pijpers' research was funded by NWO.

Dr Angelique Pijpers | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_6X6CC4_Eng

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>