Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Method devised for diagnosis of ocular diseases

18.01.2007
GAIKER-IK4 Technological Centre’s Area of Biotechnology, together with the Opthtalmological Surgery Clinical Institute of Bilbao (ICQO) are co-operating in a research project the aim of which is to develop a diagnostic system, based on immunochromatographic techniques, for the specific recognition of proteic markers for ocular pathologies in eye teardrop samples.

This system, carried out with a swab (similar to pregnancy testing), will initially detect specific markers for ocular pathologies such as conjunctivochalasis and keratoconus and will enable, with a sample of teardrop liquid, the diagnosis of the patient with these disorders.

The ease of use of the system and both its speed and simplicity (a positive testing sign in the form of a coloured band) enables the system to be employed on a daily basis in the clinic. The markers on which the design of this diagnostic system is based are being analysed throughout the research project and validated by means of their recognition by specific antibodies in samples from the tears of patients affected by these pathologies.

In the future, towards the end of 2008, those responsible for the project hope to develop a multiple system, capable of detecting the presence of other ocular pathologies, besides the two already established in the initial phase, and with the aim of launching the diagnostic tests on the market.

Pathologies studied

Keratoconus or conic cornea condition is a disorder of the human eye which rarely causes blindness but can considerably interfere with vision. This pathology distorts the usual rounded shape of the cornea and forms acone-shaped prominence. It occurs in one in every two thousand persons and generally it coincides with puberty. Keratoconus does not follow any known geographical cultural or social pattern.

Conjunctivochalasis is the relaxation of the bulbar conjunctive capable of creating conjunctive folds over the lower palpebral rim.

Progress of the research

This research project, started in 2004 and due to terminate next year, is based on a comparative study of proteome in samples of teardrops from patients suffering from keratoconus and conjunctivochalasis and, as a control, in samples of healthy patients.

Proteomics is the tool employed in this study to simultaneously analyse all the proteins involved in a pathology and contained in just one sample of teardrops. This set of proteins, known as “proteome”, is what enables the determination of which proteins are affected in their expression in ocular pathology conditions, thus indicating to GAIKER-IK4 researchers which are the potential markers to employ as recognition targets within the diagnostic system being developed.

This approximation is important in as far as just one sample enables the analysis not only of one or two proteins, but of all the proteins contained in the teardrop and that are involved in the evolution of a specific ocular pathology, thus enabling finding various markers, suitable for use in developing multiples diagnosis systems. These new systems will have direct benefits on public health and in future can be linked with innovative technologies such as nano- and microtechnologies, capable of incorporating fragments of biomolecules.

Irati Kortabitarte | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=1153

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>