Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Method devised for diagnosis of ocular diseases

18.01.2007
GAIKER-IK4 Technological Centre’s Area of Biotechnology, together with the Opthtalmological Surgery Clinical Institute of Bilbao (ICQO) are co-operating in a research project the aim of which is to develop a diagnostic system, based on immunochromatographic techniques, for the specific recognition of proteic markers for ocular pathologies in eye teardrop samples.

This system, carried out with a swab (similar to pregnancy testing), will initially detect specific markers for ocular pathologies such as conjunctivochalasis and keratoconus and will enable, with a sample of teardrop liquid, the diagnosis of the patient with these disorders.

The ease of use of the system and both its speed and simplicity (a positive testing sign in the form of a coloured band) enables the system to be employed on a daily basis in the clinic. The markers on which the design of this diagnostic system is based are being analysed throughout the research project and validated by means of their recognition by specific antibodies in samples from the tears of patients affected by these pathologies.

In the future, towards the end of 2008, those responsible for the project hope to develop a multiple system, capable of detecting the presence of other ocular pathologies, besides the two already established in the initial phase, and with the aim of launching the diagnostic tests on the market.

Pathologies studied

Keratoconus or conic cornea condition is a disorder of the human eye which rarely causes blindness but can considerably interfere with vision. This pathology distorts the usual rounded shape of the cornea and forms acone-shaped prominence. It occurs in one in every two thousand persons and generally it coincides with puberty. Keratoconus does not follow any known geographical cultural or social pattern.

Conjunctivochalasis is the relaxation of the bulbar conjunctive capable of creating conjunctive folds over the lower palpebral rim.

Progress of the research

This research project, started in 2004 and due to terminate next year, is based on a comparative study of proteome in samples of teardrops from patients suffering from keratoconus and conjunctivochalasis and, as a control, in samples of healthy patients.

Proteomics is the tool employed in this study to simultaneously analyse all the proteins involved in a pathology and contained in just one sample of teardrops. This set of proteins, known as “proteome”, is what enables the determination of which proteins are affected in their expression in ocular pathology conditions, thus indicating to GAIKER-IK4 researchers which are the potential markers to employ as recognition targets within the diagnostic system being developed.

This approximation is important in as far as just one sample enables the analysis not only of one or two proteins, but of all the proteins contained in the teardrop and that are involved in the evolution of a specific ocular pathology, thus enabling finding various markers, suitable for use in developing multiples diagnosis systems. These new systems will have direct benefits on public health and in future can be linked with innovative technologies such as nano- and microtechnologies, capable of incorporating fragments of biomolecules.

Irati Kortabitarte | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=1153

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>