Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel regulation of the common tumor suppressor PTEN

15.01.2007
PTEN is one of the most commonly mutated tumor suppressor genes. It is an antagonist for many cellular growth, proliferation and survival processes. When mutated or deleted, it causes cancers of the prostate, breast, colon, and brain.

Researchers led by scientists at Memorial Sloan-Kettering Cancer Center have now identified fundamentally novel regulatory mechanisms of PTEN function. The findings from two related studies are published in the January 12 issue of Cell.

The first is research by Dr. Xuejen Jiang's laboratory at Sloan-Kettering which identified a novel component that regulates PTEN. This protein, NEDD4-1, controls protein stability in cells. Researchers found that NEDD4-1 is a key component in eliminating PTEN from cells by adding a molecular tag, ubiquitin, to PTEN causing degradation in the cellular machinery called proteasome. In a mouse model for prostate cancer, the researchers found that areas with aggressive tumor contained low PTEN levels and high NEDD4-1. They concluded that NEDD4-1 could promote cancer development by down-regulating PTEN.

The second study by Dr. Pier Paolo Pandolfi of Memorial Sloan-Kettering and colleagues found that the ubiquitination of PTEN by NEDD4-1 also regulates another important aspect of PTEN, its cellular localization.

PTEN has been found mostly in the cytoplasm but has been known to also be in cell nuclei. While the cytoplasmic function of PTEN is now quite well understood, its nuclear functions have been elusive. Looking at a family with an inherited PTEN mutation that caused them to have the cancer-susceptibility condition, Cowden Syndrome, researchers found that the patients' colon cancer strikingly lacked nuclear PTEN.

The Pandolfi and Jiang labs showed that the PTEN mutation in these patients prevented the addition of ubiquitin by NEDD4-1, providing a molecular mechanism for the detrimental effect of the mutant PTEN protein. They showed that the single ubiquitin tagging is necessary to import PTEN into the cell nucleus where it is protected from degradation and cancer is initiated.

According to the researchers, the uncovered key role of PTEN degradation provides a new therapeutic strategy. Since ubiquitination has both positive (single tag) and negative (repetitive tagging) effects, a class of drugs, the proteasome inhibitors, that selectively blocks the degrading effects of ubiquitination, should now be studied as possible treatments for cancers with PTEN mutations.

Joanne Nicholas | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>