Researchers find that arsenic triggers unique mechanism in rare leukemia

Their study is published in the Jan. 3 issue of the Journal of the National Cancer Institute.

“We knew that arsenite was particularly effective against this cancer, and we wanted to figure out why,” says Sutisak Kitareewan, an author on this paper and an instructor of pharmacology and toxicology at DMS. “Now we know that arsenite destabilizes lysosomes, a part of a cell that contains certain enzymes, which, when released, often kill APL cells.”

APL is caused by the swapping of chromosomes 15 and 17, which forms a fusion protein. This fusion protein prevents certain blood cells from maturing and leads to an accumulation of immature leukemia cells. Researchers found that arsenite causes rapid destabilization of the lysosome in cells, and that breaks the lysosome apart, releasing enzymes that destroy these particular kinds of leukemia cells.

“We hope this finding will be used to inform further research into treating APL,” says co-author Ethan Dmitrovsky, professor of medicine and of pharmacology and toxicology, who is also affiliated with the Norris Cotton Cancer Center at Dartmouth-Hitchcock Medical Center. “We also hope that further studies examine if this same mode of action is the basis for arsenic toxicity.”

In addition to Kitareewan and Dmitrovsky, the other authors on the paper include B.D. Roebuck, professor of pharmacology and toxicology; Eugene Demidenko, research professor of community and family medicine in the area of biostatistics; and Roger Sloboda, the Ira Allen Eastman Professor of Biological Sciences. Dmitrovsky also holds the Andrew G. Wallace Professorship at Dartmouth.

This research was supported by funds from the National Institutes of Health and the National Science Foundation.

Media Contact

Sue Knapp EurekAlert!

More Information:

http://www.dartmouth.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors