Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find that arsenic triggers unique mechanism in rare leukemia

10.01.2007
Dartmouth Medical School (DMS) researchers have identified a new way that arsenite, a form of arsenic, acts in treating a rare cancer known as APL, or acute promyelocytic leukemia.

Their study is published in the Jan. 3 issue of the Journal of the National Cancer Institute.

"We knew that arsenite was particularly effective against this cancer, and we wanted to figure out why," says Sutisak Kitareewan, an author on this paper and an instructor of pharmacology and toxicology at DMS. "Now we know that arsenite destabilizes lysosomes, a part of a cell that contains certain enzymes, which, when released, often kill APL cells."

APL is caused by the swapping of chromosomes 15 and 17, which forms a fusion protein. This fusion protein prevents certain blood cells from maturing and leads to an accumulation of immature leukemia cells. Researchers found that arsenite causes rapid destabilization of the lysosome in cells, and that breaks the lysosome apart, releasing enzymes that destroy these particular kinds of leukemia cells.

"We hope this finding will be used to inform further research into treating APL," says co-author Ethan Dmitrovsky, professor of medicine and of pharmacology and toxicology, who is also affiliated with the Norris Cotton Cancer Center at Dartmouth-Hitchcock Medical Center. "We also hope that further studies examine if this same mode of action is the basis for arsenic toxicity."

In addition to Kitareewan and Dmitrovsky, the other authors on the paper include B.D. Roebuck, professor of pharmacology and toxicology; Eugene Demidenko, research professor of community and family medicine in the area of biostatistics; and Roger Sloboda, the Ira Allen Eastman Professor of Biological Sciences. Dmitrovsky also holds the Andrew G. Wallace Professorship at Dartmouth.

This research was supported by funds from the National Institutes of Health and the National Science Foundation.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>