Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of a diagnostic chip to test for multiple sexually transmitted infections

13.12.2006
Oxford Gene Technology in collaboration with St George’s, University of London and St George’s Healthcare NHS Trust to develop diagnostic chip to test for multiple sexually transmitted infections

Oxford Gene Technology (OGT), St George’s University of London and St George’s Healthcare NHS Trust are pleased to announce the signing of a collaboration agreement to develop a cost-effective single platform microarray to diagnose multiple sexually transmitted infections (STIs).

The collaboration between OGT and St George’s aims to develop a diagnostic test with the capacity to detect the DNA of many sexually transmitted pathogens in one specimen from infected people.

The microarray test aims for more comprehensive and accurate diagnoses with accurate same-day results. Ultimately, the array technology lends itself to the development of point-of-care testing for multiple STIs combined with the highest standards of accuracy. The STI diagnostic microarray is a timely investment in new gene technologies that directly address the emerging crisis of STIs in the UK, highlighted by the recent report of the Health Protection Agency (2006).

Dr Tariq Sadiq, Senior Lecturer and Consultant Genito Urinary Physician at St George’s, said on behalf of the University and NHS Trust “The incidence of STI continues to rise and is challenging our ability to provide care for our patients, directly costing the NHS in excess of £1 billion a year. As more responsibility for this care falls on settings such as GP practices, community based sexual health care providers and even high street pharmacies, concern exists for the need to maintain high standards of diagnostic accuracy while also recognising the increasing role of many infections not traditionally tested for. If successful, we think the microarray may be an important tool in the attempts to reduce the burden of STIs and their transmission”

Diagnostic DNA microarrays or ‘gene chips’ have been pioneered by the research team of Professor Philip Butcher, of St George’s, University of London, for bacterial and viral pathogen detection, exploiting expertise in bacterial microarrays built up by the Wellcome Trust funded B?G@S project (http://www.bugs.sgul.ac.uk).

In partnership with St George’s clinical and microbiology expertise, OGT will design and develop the high quality optimised 60mer oligonucleotide microarray using its ink jet in-situ synthesis (IJISS) platform and will also investigate the use of its Multi Sample Array (MSA) format enabling the parallel analysis of multiple samples. This will aim to reduce the cost per sample and provide a rapid diagnostic result.

Dr John Anson, Research and Development Director at OGT said: “OGT’s microarray technologies will provide a nucleic acid based tool which, coupled with PCR amplification, is aimed at producing a diagnostic test to improve the detection range, accuracy and the speed of STI diagnosis to meet clinician’s needs.”

The project will be jointly funded by the Heptagon Proof of Concept Fund and OGT and will last a year in the first instance. By then end of this period, the team hope to have a prototype which will then be validated using clinical samples.

To access a copy of the HPA report, “A complex picture: HIV & other sexually transmitted infections in the United Kingdom: 2006” http://www.hpa.org.uk/publications/2006/hiv_sti_2006/default.htm

For further information, please contact:

At Oxford Gene Technology:
Nicola Booton-Mander, Marketing Manager
Oxford Gene Technology
Begbroke Science Park,
Sandy Lane, Yarnton
Oxford OX5 1PF
T: +44 1865 856352
F: +44 1865 842116
E: services@ogt.co.uk
W: www.ogt.co.uk
Media Enquiries:
Annabel Entress, 0203 008 7557 / a.entress@northbankcommunications.com
Sarah Jeffery, 0203 008 7557 / s.jeffery@northbankcommunications.com
At St George’s, University of London:
Eve Jaques
Technology Transfer Officer
Centre for Enterprise and Innovation,
Hunter Wing,
Cranmer Terrace
London, SW17 0RE
Tel: +44 (0)20 8266 6865
Fax: +44 (0)20 8725 0312
Email: ejaques@sgul.ac.uk
Website: www.enterprise.sgul.ac.uk
Media Enquiries:
Andrea Vazquez, 020 8725 1139, avazquez@sgul.ac.uk

Andrea Vazquez | alfa
Further information:
http://www.sgul.ac.uk
http://www.ogt.co.uk
http://www.enterprise.sgul.ac.uk

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>