Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Development of a diagnostic chip to test for multiple sexually transmitted infections

Oxford Gene Technology in collaboration with St George’s, University of London and St George’s Healthcare NHS Trust to develop diagnostic chip to test for multiple sexually transmitted infections

Oxford Gene Technology (OGT), St George’s University of London and St George’s Healthcare NHS Trust are pleased to announce the signing of a collaboration agreement to develop a cost-effective single platform microarray to diagnose multiple sexually transmitted infections (STIs).

The collaboration between OGT and St George’s aims to develop a diagnostic test with the capacity to detect the DNA of many sexually transmitted pathogens in one specimen from infected people.

The microarray test aims for more comprehensive and accurate diagnoses with accurate same-day results. Ultimately, the array technology lends itself to the development of point-of-care testing for multiple STIs combined with the highest standards of accuracy. The STI diagnostic microarray is a timely investment in new gene technologies that directly address the emerging crisis of STIs in the UK, highlighted by the recent report of the Health Protection Agency (2006).

Dr Tariq Sadiq, Senior Lecturer and Consultant Genito Urinary Physician at St George’s, said on behalf of the University and NHS Trust “The incidence of STI continues to rise and is challenging our ability to provide care for our patients, directly costing the NHS in excess of £1 billion a year. As more responsibility for this care falls on settings such as GP practices, community based sexual health care providers and even high street pharmacies, concern exists for the need to maintain high standards of diagnostic accuracy while also recognising the increasing role of many infections not traditionally tested for. If successful, we think the microarray may be an important tool in the attempts to reduce the burden of STIs and their transmission”

Diagnostic DNA microarrays or ‘gene chips’ have been pioneered by the research team of Professor Philip Butcher, of St George’s, University of London, for bacterial and viral pathogen detection, exploiting expertise in bacterial microarrays built up by the Wellcome Trust funded B?G@S project (

In partnership with St George’s clinical and microbiology expertise, OGT will design and develop the high quality optimised 60mer oligonucleotide microarray using its ink jet in-situ synthesis (IJISS) platform and will also investigate the use of its Multi Sample Array (MSA) format enabling the parallel analysis of multiple samples. This will aim to reduce the cost per sample and provide a rapid diagnostic result.

Dr John Anson, Research and Development Director at OGT said: “OGT’s microarray technologies will provide a nucleic acid based tool which, coupled with PCR amplification, is aimed at producing a diagnostic test to improve the detection range, accuracy and the speed of STI diagnosis to meet clinician’s needs.”

The project will be jointly funded by the Heptagon Proof of Concept Fund and OGT and will last a year in the first instance. By then end of this period, the team hope to have a prototype which will then be validated using clinical samples.

To access a copy of the HPA report, “A complex picture: HIV & other sexually transmitted infections in the United Kingdom: 2006”

For further information, please contact:

At Oxford Gene Technology:
Nicola Booton-Mander, Marketing Manager
Oxford Gene Technology
Begbroke Science Park,
Sandy Lane, Yarnton
Oxford OX5 1PF
T: +44 1865 856352
F: +44 1865 842116
Media Enquiries:
Annabel Entress, 0203 008 7557 /
Sarah Jeffery, 0203 008 7557 /
At St George’s, University of London:
Eve Jaques
Technology Transfer Officer
Centre for Enterprise and Innovation,
Hunter Wing,
Cranmer Terrace
London, SW17 0RE
Tel: +44 (0)20 8266 6865
Fax: +44 (0)20 8725 0312
Media Enquiries:
Andrea Vazquez, 020 8725 1139,

Andrea Vazquez | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>