Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of a diagnostic chip to test for multiple sexually transmitted infections

13.12.2006
Oxford Gene Technology in collaboration with St George’s, University of London and St George’s Healthcare NHS Trust to develop diagnostic chip to test for multiple sexually transmitted infections

Oxford Gene Technology (OGT), St George’s University of London and St George’s Healthcare NHS Trust are pleased to announce the signing of a collaboration agreement to develop a cost-effective single platform microarray to diagnose multiple sexually transmitted infections (STIs).

The collaboration between OGT and St George’s aims to develop a diagnostic test with the capacity to detect the DNA of many sexually transmitted pathogens in one specimen from infected people.

The microarray test aims for more comprehensive and accurate diagnoses with accurate same-day results. Ultimately, the array technology lends itself to the development of point-of-care testing for multiple STIs combined with the highest standards of accuracy. The STI diagnostic microarray is a timely investment in new gene technologies that directly address the emerging crisis of STIs in the UK, highlighted by the recent report of the Health Protection Agency (2006).

Dr Tariq Sadiq, Senior Lecturer and Consultant Genito Urinary Physician at St George’s, said on behalf of the University and NHS Trust “The incidence of STI continues to rise and is challenging our ability to provide care for our patients, directly costing the NHS in excess of £1 billion a year. As more responsibility for this care falls on settings such as GP practices, community based sexual health care providers and even high street pharmacies, concern exists for the need to maintain high standards of diagnostic accuracy while also recognising the increasing role of many infections not traditionally tested for. If successful, we think the microarray may be an important tool in the attempts to reduce the burden of STIs and their transmission”

Diagnostic DNA microarrays or ‘gene chips’ have been pioneered by the research team of Professor Philip Butcher, of St George’s, University of London, for bacterial and viral pathogen detection, exploiting expertise in bacterial microarrays built up by the Wellcome Trust funded B?G@S project (http://www.bugs.sgul.ac.uk).

In partnership with St George’s clinical and microbiology expertise, OGT will design and develop the high quality optimised 60mer oligonucleotide microarray using its ink jet in-situ synthesis (IJISS) platform and will also investigate the use of its Multi Sample Array (MSA) format enabling the parallel analysis of multiple samples. This will aim to reduce the cost per sample and provide a rapid diagnostic result.

Dr John Anson, Research and Development Director at OGT said: “OGT’s microarray technologies will provide a nucleic acid based tool which, coupled with PCR amplification, is aimed at producing a diagnostic test to improve the detection range, accuracy and the speed of STI diagnosis to meet clinician’s needs.”

The project will be jointly funded by the Heptagon Proof of Concept Fund and OGT and will last a year in the first instance. By then end of this period, the team hope to have a prototype which will then be validated using clinical samples.

To access a copy of the HPA report, “A complex picture: HIV & other sexually transmitted infections in the United Kingdom: 2006” http://www.hpa.org.uk/publications/2006/hiv_sti_2006/default.htm

For further information, please contact:

At Oxford Gene Technology:
Nicola Booton-Mander, Marketing Manager
Oxford Gene Technology
Begbroke Science Park,
Sandy Lane, Yarnton
Oxford OX5 1PF
T: +44 1865 856352
F: +44 1865 842116
E: services@ogt.co.uk
W: www.ogt.co.uk
Media Enquiries:
Annabel Entress, 0203 008 7557 / a.entress@northbankcommunications.com
Sarah Jeffery, 0203 008 7557 / s.jeffery@northbankcommunications.com
At St George’s, University of London:
Eve Jaques
Technology Transfer Officer
Centre for Enterprise and Innovation,
Hunter Wing,
Cranmer Terrace
London, SW17 0RE
Tel: +44 (0)20 8266 6865
Fax: +44 (0)20 8725 0312
Email: ejaques@sgul.ac.uk
Website: www.enterprise.sgul.ac.uk
Media Enquiries:
Andrea Vazquez, 020 8725 1139, avazquez@sgul.ac.uk

Andrea Vazquez | alfa
Further information:
http://www.sgul.ac.uk
http://www.ogt.co.uk
http://www.enterprise.sgul.ac.uk

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>