Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Pursue New Target for Asthma Treatment

22.11.2006
Cincinnati scientists have found further evidence that certain defensive white cells in the body cause or play a major role in the symptoms experienced by asthma patients.

Their findings, scientists say, could lead to the identification of a new treatment “target” to help the estimated 17 million asthma sufferers in the United States.

The scientists, at the University of Cincinnati (UC) Academic Health Center and Cincinnati Children’s Hospital Medical Center, report their results in the Oct. 31, 2006, edition of the Proceedings of the National Academy of Sciences.

Working with genetically altered mice, the Cincinnati researchers studied a group of cells called eosinophils. Originally evolved to defend the body against parasite infection, a problem no longer common in the Western world, eosinophils are known to accumulate during allergic responses—and especially in mucous in the lungs of asthma patients.

“Researchers have been looking at the role of eosinophils in asthma for decades,” says research associate and first author Patricia Fulkerson, PhD. “Since people in the Western world don’t have parasites in their guts to the extent they used to, the question is what eosinophils do now?”

“Previous studies linking eosinophils to asthma were done in single models,” Fulkerson explains. “We increased the power of our study by looking at multiple models, and by doing that we show a strong role for eosinophils in mucous production in asthma.”

The researchers, led by Professor Marc Rothenberg, MD, PhD, of UC College of Medicine and Cincinnati Children’s Hospital Medical Center, also showed that eosinophils contribute to the recruitment of the immunity-regulating proteins known as cytokines, a process that allows mucous to accumulate in the lung.

“Previously most scientists looked at one model at a time—eliminating as many eosinophils as possible, inducing each model with asthma, and then watching what happens in an allergic response,” Fulkerson explains. “Using just one model, however, it’s difficult to determine the role of eosinophils versus that model’s own genetic strategy.”

So instead of a single model, Rothenberg, Fulkerson and their colleagues used three different ones. They studied one mouse model in which eosinophils don’t develop from bone marrow, as they should, and two models in which eosinophils remain in the blood stream instead of rallying into the lung tissue to protect against asthma.

They then looked at the characteristics that all three models had in common so they could attribute any alteration in their appearance (or phenotype) to eosinophils, and not to that particular model’s genetics.

In the absence of eosinophils, the researchers report, they found that allergen-induced mucous production dropped in all models, suggesting that “eosinophils play a big role in mucous production in response to an allergen challenge.”

The researchers also report that eosinophils alter the lungs’ “micro environment” by stimulating production of the signaling cytokines. Involved in triggering the body’s immune defense mechanism to take action against infection, cytokines are responsible for almost all the characteristics of asthma.

“If cytokines are produced in the lungs, you’ll end up with asthma,” says Fulkerson. “But we found in eosinophil-free models that the cytokines that together produce almost all the visible symptoms of asthma—known as IL (interleukin) 4 and IL 13—were markedly reduced.

Having shown that eosinophils play an important part in mucous production and airway obstruction in asthma, the researchers’ next goal was to determine how they actually do that.

Examination of mouse lung tissue revealed increased genetic activity associated with the characteristics of asthma: mucous, airway obstruction and hyperactivity.

“We took two of these models and looked at changes in gene expression in the lung caused by eosinophils,” says Fulkerson. “We only picked up the genes that were in common in both models, so we can say the changes were eosinophil dependent versus model dependent.

“So now we have this list of genes that are eosinophil dependent in an experimental animal model and we’re identifying new pathways that have never been attributed to eosinophils before,” Fulkerson adds. “Now we and other researchers will pursue this to learn exactly what eosinophils are doing to those pathways and to see how we can block their contributions to asthma.

Some of these genetic pathways were known to be important in asthma, says Fulkerson, but no one had previously attributed them to eosinophils.

“That’s the exciting part,” she says. “If we can prevent eosinophils from being activated, then perhaps we can develop new targets for treatment. The goal is to find new approaches to asthma, because although we can treat asthma symptoms fairly well, we’re not so good at dealing with the long-term consequences.

“And this doesn’t only involve asthma. There are a lot of other diseases, especially digestive diseases, in which we see high levels of eosinophils that don’t belong there,” Fulkerson says.

Also contributing to the research were Christine Fischetti, Melissa McBride, Lynn Hassman and Simon Hogan, all of Cincinnati Children’s.

David Bracey | EurekAlert!
Further information:
http://www.uc.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>