Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New findings may lead to treatment for anxiety in Rett Syndrome

The classic form of Rett Syndrome (RTT) shows us a child who is the picture of anxiety: she wrings her hands, hyperventilates, trembles.

The sinister progression of the disorder, which usually begins to manifest between the ages of 6-18 months, includes loss of acquired skills, speech and mobility, sometimes an autistic-like withdrawal, sometimes months of inconsolable crying. A majority of girls with RTT, which is caused by mutations in the gene MECP2, display elevated stress hormones measured by urinary cortisol levels. New studies may shed light on whether much of the anxiety of these children is a response to the subjective experience of RTT, or is an intrinsic aspect of the disorder.

The lab of Huda Zoghbi at Baylor College of Medicine has been studying anxiety in their mouse model of the syndrome. These MeCP2308 mice, so called because they bear a mutant version of the MeCP2 protein that is truncated prematurely (at amino acid 308), have numerous characteristics that mimic human RTT. They appear to be healthy early on in life, but within several weeks of birth develop tremors, spasticity, seizures, and begin to display impairments in social behavior and cognitive skills. They also show signs of anxiety: they huddle in closed spaces rather than curiously exploring new areas, they avoid spending time with other animals, they tremble noticeably when being handled by the gentlest of researchers. And, as the Zoghbi lab now reports in The Proceedings of the National Academy of Sciences, the mice produce high levels of corticosterone, the mouse equivalent of the human stress hormone.

What causes the mice to be so stressed? Because MECP2 controls the expression of other genes, mutations in the protein that disrupt its normal function should allow misexpression of target genes. Thus far, five targets of MeCP2 activity have been identified, though the precise role any of them play in the RTT phenotype remains unclear. But the combination of anxious behavior and increased corticosterone release led McGill et al. to hypothesize that their mice might be suffering from abnormal expression of Crh, the gene that produces corticotropin-releasing hormone (CRH). The authors searched specific regions of the MeCP2308 mouse brain where CRH normally works, and found that the mice do indeed overexpress Crh in regions responsible for behavioral and physiological responses to stress.

In healthy mammals, CRH activates the hypothalmic-pituitary-adrenal axis in response to stressful events, stimulating glucocorticoid release from the adrenal cortex. When the environmental stressor subsides, glucocorticoid levels return to normal. Chronic stress, however, can damage neurons, reduce synaptic plasticity, and impair short-term memory -- as any stressed-out parent can attest. What is interesting here is that these same neuronal effects are seen in RTT. This suggests that an overabundance of CRH could be contributing to other aspects of the Rett phenotype.

The good news is that it is now possible to envision finding a drug that would reduce anxiety in individuals with RTT by blocking receptors for corticotropin-releasing hormone. Decreasing anxiety might also reduce some other symptoms of RTT that are produced by chronic neuronal exposure to CRH.

Monica Coenraads | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>