Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings may lead to treatment for anxiety in Rett Syndrome

15.11.2006
The classic form of Rett Syndrome (RTT) shows us a child who is the picture of anxiety: she wrings her hands, hyperventilates, trembles.

The sinister progression of the disorder, which usually begins to manifest between the ages of 6-18 months, includes loss of acquired skills, speech and mobility, sometimes an autistic-like withdrawal, sometimes months of inconsolable crying. A majority of girls with RTT, which is caused by mutations in the gene MECP2, display elevated stress hormones measured by urinary cortisol levels. New studies may shed light on whether much of the anxiety of these children is a response to the subjective experience of RTT, or is an intrinsic aspect of the disorder.

The lab of Huda Zoghbi at Baylor College of Medicine has been studying anxiety in their mouse model of the syndrome. These MeCP2308 mice, so called because they bear a mutant version of the MeCP2 protein that is truncated prematurely (at amino acid 308), have numerous characteristics that mimic human RTT. They appear to be healthy early on in life, but within several weeks of birth develop tremors, spasticity, seizures, and begin to display impairments in social behavior and cognitive skills. They also show signs of anxiety: they huddle in closed spaces rather than curiously exploring new areas, they avoid spending time with other animals, they tremble noticeably when being handled by the gentlest of researchers. And, as the Zoghbi lab now reports in The Proceedings of the National Academy of Sciences, the mice produce high levels of corticosterone, the mouse equivalent of the human stress hormone.

What causes the mice to be so stressed? Because MECP2 controls the expression of other genes, mutations in the protein that disrupt its normal function should allow misexpression of target genes. Thus far, five targets of MeCP2 activity have been identified, though the precise role any of them play in the RTT phenotype remains unclear. But the combination of anxious behavior and increased corticosterone release led McGill et al. to hypothesize that their mice might be suffering from abnormal expression of Crh, the gene that produces corticotropin-releasing hormone (CRH). The authors searched specific regions of the MeCP2308 mouse brain where CRH normally works, and found that the mice do indeed overexpress Crh in regions responsible for behavioral and physiological responses to stress.

In healthy mammals, CRH activates the hypothalmic-pituitary-adrenal axis in response to stressful events, stimulating glucocorticoid release from the adrenal cortex. When the environmental stressor subsides, glucocorticoid levels return to normal. Chronic stress, however, can damage neurons, reduce synaptic plasticity, and impair short-term memory -- as any stressed-out parent can attest. What is interesting here is that these same neuronal effects are seen in RTT. This suggests that an overabundance of CRH could be contributing to other aspects of the Rett phenotype.

The good news is that it is now possible to envision finding a drug that would reduce anxiety in individuals with RTT by blocking receptors for corticotropin-releasing hormone. Decreasing anxiety might also reduce some other symptoms of RTT that are produced by chronic neuronal exposure to CRH.

Monica Coenraads | EurekAlert!
Further information:
http://www.rsrf.org

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>