Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Intensity-modulated radiation therapy reduces side effects for cervical cancer

Preliminary results from a University of Pittsburgh study evaluating extended-field intensity-modulated radiation therapy (IMRT) for cervical cancer found that it resulted in significantly reduced side effects and outcomes comparable to standard radiotherapy. The findings were presented today at the 48th Annual Meeting of the American Society for Therapeutic Radiology and Oncology (ASTRO) in Philadelphia.

"We have been limited in our ability to treat women with cervical cancer with optimal doses of radiotherapy because of debilitating side effects that greatly impact their quality of life," said Dwight E. Heron, M.D., study co-author and associate professor of radiation oncology, University of Pittsburgh School of Medicine. "Our study demonstrates that with IMRT, we can target high-energy beams directly to the tumor site and the areas of concern where the cancer cells may travel, resulting in less side effects and enabling us to give a full therapeutic dose."

Extended-field radiotherapy (EFRT) is the method of radiotherapy used with advanced cervical cancer in which the pelvis and abdominal region are irradiated to destroy cancer cells that travel up to the abdominal lymph nodes that drain from the tumor. According to Dr. Heron, standard EFRT causes serious side effects in as many as 40 percent of patients. These side effects can include frequent urination and pain, diarrhea and bowel obstruction and tend to worsen when chemotherapy is given at the same time as radiotherapy.

In the current study, 36 patients with cervical cancer were treated with extended-field IMRT and the chemotherapy agent cisplatin to determine the efficacy of treatment and treatment-related side effects. Of these patients, 34 had a complete response to treatment. Only two patients developed higher-grade gastrointestinal and urinary side effects and 10 developed myelotoxicity, a slowdown of blood cell production that is common with chemotherapy. The overall survival rate at two-year follow-up was 54 percent.

"We found that by using extended-field IMRT and chemotherapy, we were able to effectively reduce the toxic effects of treatment," said Sushil Beriwal, M.D., principal investigator and assistant professor at the University of Pittsburgh School of Medicine and medical director of radiation oncology at Magee-Womens Hospital of UPMC. "This is important because it means there are less treatment interruptions and more patients are able to complete the treatment within the prescribed time period. This, in turn, increases the efficacy of treatment, giving us encouraging evidence that these cervical cancer patients can benefit from IMRT."

Unlike standard radiation therapy, IMRT administers a radiation field that consists of several hundred small beams of varying intensities that pass through normal tissue without doing significant damage but converge to give a precise dose of radiation at the tumor site. IMRT can potentially limit the adverse side effects from radiation while increasing the intensity of doses that can be given to effectively destroy cancer cells.

Clare Collins | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>