Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson oncologists show less radiation just as effective in fighting brain tumor, saving hearing

08.11.2006
Radiation oncologists at the Kimmel Cancer Center at Thomas Jefferson University and Thomas Jefferson University Hospital in Philadelphia have found that giving less radiation than usual is just as effective against a benign but potential devastating brain tumor called an acoustic schwannoma, and better yet, might save more of the patient's hearing.

Only about 2,000 to 3,000 cases of acoustic schwannomas occur annually in the United States. Because it's a slow-growing tumor that develops in the vestibular nerve that lies very close to the auditory or hearing, nerve, the most common symptom is hearing loss. Left untreated, the hearing loss can be severe.

While surgery is the only way to remove the tumor, it's tricky and can potentially damage surrounding cranial nerves. Treating the tumor with radiation is usually effective, less risky, and the vast majority of tumors do not grow back, says Maria Werner-Wasik, M.D., associate professor of radiation oncology at Jefferson Medical College of Thomas Jefferson University.

But higher doses of radiation carry some risks of hearing damage too. Dr. Werner-Wasik, David Andrews, M.D., professor of neurological surgery at Jefferson Medical College, and their co-workers wanted to find out if lower doses would work just as well. They compared two groups among 115 patients with acoustic schwannomas treated at Thomas Jefferson University Hospital between 1994 and 2005. One group of 74 patients received fractionated doses – small, daily doses of radiation – resulting in "excellent tumor control and reasonable hearing preservation," she says. The remaining 41 patients also received fractionated doses, but at a lower radiation dose.

The researchers found that the local tumor control was the same for both groups, around 98 to 100 percent. The fifth and seventh nerve toxicity was the same – between 0 and 2 percent, but the hearing seemed slightly better in the lower dose group than in the higher dose. They report their results on November 7, 2006 at the annual meeting of the American Society for Therapeutic Radiology and Oncology in Philadelphia.

When the researchers adjusted statistically for patients in both groups that had only up to three years of follow-up, they found a significant improvement in hearing as gauged by "pure tone average," or PTA, which is the loudness in decibels that an individual patient can hear. Patients who had the higher radiation dose had a mean difference in PTA before and after treatment of 15.4, versus those in the lower dose level, at 5.7.

"We think that the lower dose level is associated with equally good local control and better hearing preservation, and we'll continue to make these observations and perhaps further reduce the doses," says Dr. Werner-Wasik. Lower radiation doses mean shorter treatment times and fewer visits. Patients received the lower dose over 26 treatments, while those who received the higher dose required 30 treatments. She notes that similar results were found by other researchers using Gamma Knife technology.

"While the standard of care has been surgery for most patients, the pendulum is swinging to radiation becoming the new standard for most as an initial treatment," she says.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

A Nano-Roundabout for Light

09.12.2016 | Physics and Astronomy

Further Improvement of Qubit Lifetime for Quantum Computers

09.12.2016 | Physics and Astronomy

New weapon against Diabetes

09.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>