Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clamping down on a cancer-causing protein

28.01.2002


Many of today’s medicines were discovered by trial and error: a substance is found which helps alleviate the symptoms of a disease, and it may take years before scientists really understand how it works. Typically they find that a drug has its effects by attaching itself to a particular molecule in a cell and blocking part of its activity, the way you might prevent someone from turning a light on or off by putting a lock over the switch. Scientists now hope to take the opposite approach, and custom-design drugs to block specific switches. To do so, they will need precise “technical diagrams” of the molecules they want to lock up. Now the Italian researcher Giulio Superti-Furga and his colleagues at the European Molecular Biology Laboratory (EMBL) have produced such a diagram of a cancer-causing molecule, and their work gives researchers a good idea of how to go about designing drugs. Their report appears in the current issue of the journal Cell.



The molecule, a protein called Abl, is produced in all human cells. Some people acquire a defect in the genetic blueprint for this molecule, causing their bodies to create a malformed version called BCR-Abl. For years researchers have known that this defective molecule is linked to forms of the deadly disease leukemia.

Abl has important jobs to perform within cells. One of its chief roles is to get information from proteins and pass it on to other molecules – like a radio operator who receives a message telling him to turn on an alarm. If Abl is defective, it might not hear incoming messages, or it might continually send off alarms, even when it hasn’t been told to do so.


One of the messages that Abl transmits tells the cell, “It’s time to divide.” Normally this signal shouldn’t be sent too often, but BCR-Abl and other defective forms of the protein are stuck in transmission mode, leading to a very high rate of cell division and thus cancer.

“Abl needs to be switched off, and one of the chief questions that people have had is whether other molecules are needed to throw the switch, or whether Abl can turn itself off,” says Giulio Superti-Furga. “We’ve now discovered that there is an internal switch that allows it to shut itself down. BCR-Abl is missing an important structural piece of the protein, a sort of clamp that holds things in the right places, and the molecule can’t stop sending signals.”

The key thing that Superti-Furga and colleagues Helma Pluk and Karel Dorey have discovered is that the clamp lies in a part of the molecule quite distant from the machinery that actually transmits signals. Clinical trials are currently being performed with a drug called STI571, which appears to directly block the transmission machinery, but some patients are able to develop resistance to the drug. This might be because the real switch is still turned on.

The EMBL researchers discovered the clamp by creating artificial versions of Abl missing certain parts, and then examining the molecule’s transmitting capabilities in the test tube. When they removed a cap section that connects itself to two major substructures of the molecule, they discovered that Abl could no longer be shut down.

“BCR-Abl doesn’t have this cap, so other parts of the the molecule probably move out of their proper positions,” Superti-Furga says. “If you imitate this by removing the cap from the normal form of Abl, or preventing the cap from clamping onto the proper parts of the molecule, the switch gets frozen.”

This explains why several roads might lead to the same result – cancer. Even if the cap structure is present, other molecules might interfere with it and break the internal switch. By showing that the cap is essential in Abl’s switch, the researchers have provided a very good place to start in designing new drugs for this specific type of cancer.



Russell Hodge | alphagalileo
Further information:
http://www.embl-heidelberg.de

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>