Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clamping down on a cancer-causing protein

28.01.2002


Many of today’s medicines were discovered by trial and error: a substance is found which helps alleviate the symptoms of a disease, and it may take years before scientists really understand how it works. Typically they find that a drug has its effects by attaching itself to a particular molecule in a cell and blocking part of its activity, the way you might prevent someone from turning a light on or off by putting a lock over the switch. Scientists now hope to take the opposite approach, and custom-design drugs to block specific switches. To do so, they will need precise “technical diagrams” of the molecules they want to lock up. Now the Italian researcher Giulio Superti-Furga and his colleagues at the European Molecular Biology Laboratory (EMBL) have produced such a diagram of a cancer-causing molecule, and their work gives researchers a good idea of how to go about designing drugs. Their report appears in the current issue of the journal Cell.



The molecule, a protein called Abl, is produced in all human cells. Some people acquire a defect in the genetic blueprint for this molecule, causing their bodies to create a malformed version called BCR-Abl. For years researchers have known that this defective molecule is linked to forms of the deadly disease leukemia.

Abl has important jobs to perform within cells. One of its chief roles is to get information from proteins and pass it on to other molecules – like a radio operator who receives a message telling him to turn on an alarm. If Abl is defective, it might not hear incoming messages, or it might continually send off alarms, even when it hasn’t been told to do so.


One of the messages that Abl transmits tells the cell, “It’s time to divide.” Normally this signal shouldn’t be sent too often, but BCR-Abl and other defective forms of the protein are stuck in transmission mode, leading to a very high rate of cell division and thus cancer.

“Abl needs to be switched off, and one of the chief questions that people have had is whether other molecules are needed to throw the switch, or whether Abl can turn itself off,” says Giulio Superti-Furga. “We’ve now discovered that there is an internal switch that allows it to shut itself down. BCR-Abl is missing an important structural piece of the protein, a sort of clamp that holds things in the right places, and the molecule can’t stop sending signals.”

The key thing that Superti-Furga and colleagues Helma Pluk and Karel Dorey have discovered is that the clamp lies in a part of the molecule quite distant from the machinery that actually transmits signals. Clinical trials are currently being performed with a drug called STI571, which appears to directly block the transmission machinery, but some patients are able to develop resistance to the drug. This might be because the real switch is still turned on.

The EMBL researchers discovered the clamp by creating artificial versions of Abl missing certain parts, and then examining the molecule’s transmitting capabilities in the test tube. When they removed a cap section that connects itself to two major substructures of the molecule, they discovered that Abl could no longer be shut down.

“BCR-Abl doesn’t have this cap, so other parts of the the molecule probably move out of their proper positions,” Superti-Furga says. “If you imitate this by removing the cap from the normal form of Abl, or preventing the cap from clamping onto the proper parts of the molecule, the switch gets frozen.”

This explains why several roads might lead to the same result – cancer. Even if the cap structure is present, other molecules might interfere with it and break the internal switch. By showing that the cap is essential in Abl’s switch, the researchers have provided a very good place to start in designing new drugs for this specific type of cancer.



Russell Hodge | alphagalileo
Further information:
http://www.embl-heidelberg.de

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>