Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parkinson's disease impacts brain's centers of touch and vision

19.10.2006
Movement disorder affects more than just motor control

Although Parkinson's disease is most commonly viewed as a "movement disorder," scientists have found that the disease also causes widespread abnormalities in touch and vision Ð effects that have now been verified using functional magnetic resonance imaging (fMRI) of the brain. The new findings, by scientists at Emory University School of Medicine and Zhejiang University Medical School in Hangzhou China, will be presented on Oct. 17 at the Society for Neuroscience meeting in Atlanta.

Scientists studying Parkinson's disease (PD) previously have focused on the brain's motor and premotor cortex, but not the somatosensory or the visual cortex. But Emory neurologist Krish Sathian, MD, PhD, and colleagues had earlier discovered, through tests of tactile ability, that PD patients have sensory problems with touch. They designed a study using fMRI to investigate the brain changes underlying these sensory abnormalities.

Dr. Sathian's research group studied six patients with moderately advanced PD and six age-matched healthy controls. After documenting the typical movement problems of PD and ruling out dementia and nerve problems in the PD patients, they administered a common test of tactile ability to both groups, asking the participants to use their fingers to distinguish the orientation of ridges and grooves on plastic gratings. At the same time, they conducted a brain-scanning study using fMRI. This technology measures activations of neurons in different areas of the brain by means of variations in blood flow as an individual does a particular task.

The fMRI scans showed that the PD patients had much less activation of the somatosensory areas in the brain's cortex than did the healthy controls. The scientists also were surprised to find similar widespread differences in the visual cortex, although the task involved touch, not vision.

"Our finding that the visual cortex is affected in Parkinson's disease, while surprising, makes sense given that our laboratory and many others have shown previously that areas of the brain's visual cortex are intimately involved in the sense of touch," Dr. Sathian notes. "Although the reasons for this are uncertain, they may involve a process of mental visualization of the tactile stimuli and may also reflect a multisensory capability of the visual cortex."

Dr. Sathian believes the study shows that the traditional boundaries between brain systems involved in touch and vision, and between those involved in sensation and movement, are artificial constructs that break down with more in-depth study. From a practical standpoint, it shows that patients with PD and other movement disorders have considerable problems in addition to movement control.

"These problems need to be appreciated in caring for these patients and in designing newer strategies for treatment and rehabilitation," Dr. Sathian emphasizes.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>