Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parkinson's disease impacts brain's centers of touch and vision

19.10.2006
Movement disorder affects more than just motor control

Although Parkinson's disease is most commonly viewed as a "movement disorder," scientists have found that the disease also causes widespread abnormalities in touch and vision Ð effects that have now been verified using functional magnetic resonance imaging (fMRI) of the brain. The new findings, by scientists at Emory University School of Medicine and Zhejiang University Medical School in Hangzhou China, will be presented on Oct. 17 at the Society for Neuroscience meeting in Atlanta.

Scientists studying Parkinson's disease (PD) previously have focused on the brain's motor and premotor cortex, but not the somatosensory or the visual cortex. But Emory neurologist Krish Sathian, MD, PhD, and colleagues had earlier discovered, through tests of tactile ability, that PD patients have sensory problems with touch. They designed a study using fMRI to investigate the brain changes underlying these sensory abnormalities.

Dr. Sathian's research group studied six patients with moderately advanced PD and six age-matched healthy controls. After documenting the typical movement problems of PD and ruling out dementia and nerve problems in the PD patients, they administered a common test of tactile ability to both groups, asking the participants to use their fingers to distinguish the orientation of ridges and grooves on plastic gratings. At the same time, they conducted a brain-scanning study using fMRI. This technology measures activations of neurons in different areas of the brain by means of variations in blood flow as an individual does a particular task.

The fMRI scans showed that the PD patients had much less activation of the somatosensory areas in the brain's cortex than did the healthy controls. The scientists also were surprised to find similar widespread differences in the visual cortex, although the task involved touch, not vision.

"Our finding that the visual cortex is affected in Parkinson's disease, while surprising, makes sense given that our laboratory and many others have shown previously that areas of the brain's visual cortex are intimately involved in the sense of touch," Dr. Sathian notes. "Although the reasons for this are uncertain, they may involve a process of mental visualization of the tactile stimuli and may also reflect a multisensory capability of the visual cortex."

Dr. Sathian believes the study shows that the traditional boundaries between brain systems involved in touch and vision, and between those involved in sensation and movement, are artificial constructs that break down with more in-depth study. From a practical standpoint, it shows that patients with PD and other movement disorders have considerable problems in addition to movement control.

"These problems need to be appreciated in caring for these patients and in designing newer strategies for treatment and rehabilitation," Dr. Sathian emphasizes.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>