Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parkinson's disease impacts brain's centers of touch and vision

19.10.2006
Movement disorder affects more than just motor control

Although Parkinson's disease is most commonly viewed as a "movement disorder," scientists have found that the disease also causes widespread abnormalities in touch and vision Ð effects that have now been verified using functional magnetic resonance imaging (fMRI) of the brain. The new findings, by scientists at Emory University School of Medicine and Zhejiang University Medical School in Hangzhou China, will be presented on Oct. 17 at the Society for Neuroscience meeting in Atlanta.

Scientists studying Parkinson's disease (PD) previously have focused on the brain's motor and premotor cortex, but not the somatosensory or the visual cortex. But Emory neurologist Krish Sathian, MD, PhD, and colleagues had earlier discovered, through tests of tactile ability, that PD patients have sensory problems with touch. They designed a study using fMRI to investigate the brain changes underlying these sensory abnormalities.

Dr. Sathian's research group studied six patients with moderately advanced PD and six age-matched healthy controls. After documenting the typical movement problems of PD and ruling out dementia and nerve problems in the PD patients, they administered a common test of tactile ability to both groups, asking the participants to use their fingers to distinguish the orientation of ridges and grooves on plastic gratings. At the same time, they conducted a brain-scanning study using fMRI. This technology measures activations of neurons in different areas of the brain by means of variations in blood flow as an individual does a particular task.

The fMRI scans showed that the PD patients had much less activation of the somatosensory areas in the brain's cortex than did the healthy controls. The scientists also were surprised to find similar widespread differences in the visual cortex, although the task involved touch, not vision.

"Our finding that the visual cortex is affected in Parkinson's disease, while surprising, makes sense given that our laboratory and many others have shown previously that areas of the brain's visual cortex are intimately involved in the sense of touch," Dr. Sathian notes. "Although the reasons for this are uncertain, they may involve a process of mental visualization of the tactile stimuli and may also reflect a multisensory capability of the visual cortex."

Dr. Sathian believes the study shows that the traditional boundaries between brain systems involved in touch and vision, and between those involved in sensation and movement, are artificial constructs that break down with more in-depth study. From a practical standpoint, it shows that patients with PD and other movement disorders have considerable problems in addition to movement control.

"These problems need to be appreciated in caring for these patients and in designing newer strategies for treatment and rehabilitation," Dr. Sathian emphasizes.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>