Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria: Efficacy of monotherapies in Cameroon

16.10.2006
Malaria, which affects about 600 millions people in the world, is the most widespread of the transmissible parasitic diseases. The causative agent is a microscopic parasite of the genus Plasmodium.

The species P. falciparum induces the most serious form of this disease. Since the 1980s, African countries where malaria is endemic have been seeing the emergence of parasite forms resistant to the most widely used treatments, especially to chloroquine. Monitoring of the extent and distribution of such resistance therefore appeared necessary, in order to devise combined treatments (bitherapies) for controlling the disease.

With this objective in mind, researchers from IRD and OCEAC, in conjunction with the Cameroon Ministry of Public Health, assessed the efficacy of the antimalarial treatments most commonly used in Cameroon. In this country, because of the great diversity of landscapes and climates, the patterns of transmission of Plasmodium by mosquitoes differ according to the region, which makes it difficult to track changes and development in resistance (1).

The researchers determined the response in children with malaria, from 12 towns and villages in Cameroon, to three different monotherapies: two habitually prescribed as first treatment in that country (chloroquine and amodiaquine) and one issued as second intention medicine (sulfadoxine-pyrimethamine). The ineffectiveness of chloroquine was rapidly confirmed, with a very high proportion of therapeutic failure (48.6% on average), greater in the south than in the north of the country. That signalled a pressing need to rectify the treatment of the children concerned as soon as possible. This drug can no longer be considered a reliable treatment in Cameroon and its withdrawal from the market by the country's health authorities (in 2002) is justified. However, amodiaquine and, to a lesser extent, sulfadoxine-pyrimethamine are still effective treatments, with low therapeutic failure rates (an average of 7.3 and 9.9% respectively) obtained for the whole set of sites studied. In order to avoid the development of new resistance, these treatments must however be combined with the most recent therapies using artemisinine derivatives, for which no form of resistance currently exists. Amodiaquine, which is generally administered as soon as the first malaria symptoms appear, seems to be the best candidate for these combinations of therapies.

The series of investigations was run from 1999 to 2004, following a protocol established by the WHO (World Health Organization), which advocates regular clinical examination and blood tests for each patient, for 14 days. This protocol enables clinicians to take into account the whole range of factors governing the parasite-host interaction (such as acquired immunity, pharmacokinetics, synergy between constituents, and also the degree of chemoresistance of Plasmodium). However, implementation of this has proved a long and intricate process in Cameroon, where transmission does not have the same pattern and rate of development everywhere. Faced with these constraints, the researchers turned to molecular markers, quick and practical to use for resistance assessment (2). They used the blood samples taken from the different sites under study to estimate the degree of resistance to pyrimethamine, one of the components of sulfadoxine-pyrimethamine. The sequence of a particular gene of Plasmodium (dhfr, dihydrofolate reductase gene) was analysed, in the search for occasional mutations that might provide the parasite with resistance to this agent. The proportion of strains of mutant Plasmodium in the samples is thus a direct expression of the resistance.

Geographical mapping of the occurrence of pyrimethamine resistance was subsequently conducted. The frequency of mutant resistant strains and the number of mutations were plotted for the different areas. The data obtained, such as the lower proportion of these resistant strains observed in the north than in the south of Cameroon, complement the results of clinical investigations. The research team has since then launched similar work, focused especially on the gene for resistance to sulfadoxine, the other constituent of the sulfadoxine-pyrimethamine mixture.

The molecular approach, adapted to the varied epidemiological backgrounds that prevail in Cameroon, is therefore highly promising as a tool for tracking the evolution of resistance to monotherapies and thus for helping to improve malaria control strategies.

(1) Cameroon, with a surface area of 475 442 km2, is situated deep in the Gulf of Guinea, a region where Central Africa and West Africa meet. This geographical situation explains the great variety of climates and landscapes which make the country a kind of "Africa in miniature" (www.diplomatie.gouv.fr/fr/payszones- geo_833/cameroun_361/presentation-ducameroun_ 946/geographie_8432.html). In the north, dominated by vast plains, malaria transmission is seasonal. In the south, characterized by the presence of vast forest, it occurs continuously and intensively.

(2) In the standard surveys on therapeutic efficiency, just one drug or a single combination was tested simultaneously, in each patient and each locality, by a specialist mobile team. In the north of Cameroon where transmission is seasonal, this team's expeditions into the field had to be carefully planned. However, in the genetic approach, the collection of capillary blood on absorbent paper does not require any specialized team. A local team of local care providers gathers all samples together and sends them to the laboratory. The search for specific resistance markers can be carried on at the same time for several substances in uniform conditions.

Marie Guillaume-Signoret | EurekAlert!
Further information:
http://www.ird.fr

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>