Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cincinnati Children's researchers publish findings on potential target for leukemia treatment

11.10.2006
Study discovering a critical role of RhoH GTPase in the development and activation of white blood cells published in Nature Immunology
Cincinnati Children's Hospital Medical Center today announced the publication of pioneering research identifying the crucial role and novel mechanism of action of the protein RhoH GTPase in the development and activation of cells critical to the immune system.

The findings, along with other studies, suggest that RhoH GTPase may provide a target for therapeutic intervention in some types of leukemia. The paper is due to appear in an upcoming edition of the journal Nature Immunology and was recently posted in the advance online publication section of the journal's website, (www.nature.com/ni/index.html).

The paper describes detailed genetic and biochemical studies undertaken by researchers in the Division of Experimental Hematology and the Division of Immunobiology. The investigators succeeded in identifying a crucial role for RhoH GTPase in the development of thymocytes and activation of T-lymphocytes, both key processes in immune cell development. In addition, the researchers uncovered a novel mechanism for regulating RhoH activity, which may have broad implications in improving researchers' understanding of the mechanism of action of the Rho GTPase protein family and provide a potential target for leukemia drug development.

"We continue to make important progress in deciphering the molecular processes involved in the development and maintenance of the immune and blood system and how disruption of key proteins may contribute to leukemia," said David A Williams, M.D., Director of Experimental Hematology, Cincinnati Children's. "Through a collaboration with Ohio State University Comprehensive Cancer Center, we are now focused on translating these findings into developing new ways to target the protein as a novel approach to treating hematological malignancy."

The development of mature white blood cells, including lymphocytes, is a highly complex process involving cell growth as well as specific genetic and biochemical steps. Disruption of this process is associated with diseases such as leukemia.

RhoH GTPase is specific to blood-forming cells. Experiments have shown that its alteration affects several key steps in the growth and development of white blood cells. Moreover, clinical samples have implicated RhoH GTPase as a factor in leukemia and lymphoma. Further work is ongoing to decipher the specific mechanism of regulation and the function of RhoH GTPase in the development of white blood cell populations.

Jim Feuer | EurekAlert!
Further information:
http://www.nature.com/ni/index.html

More articles from Health and Medicine:

nachricht Indications of Psychosis Appear in Cortical Folding
26.04.2018 | Universität Basel

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>