Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New treatment for severe malaria

The most dangerous form of malaria is difficult to treat and claims two million lives a year. Now, researchers at Karolinska Institutet in Sweden have developed a powerful new weapon against the disease.

Severe anaemia, respiratory problems and encephalopathy are common and life-threatening consequences of serious malaria infection. The diseases are caused when the malaria bacteria P.falciparium infects the red blood cells, which then accumulate in large amounts, blocking the flow of blood in the capillaries of the brain and other organs.

The reason that the blood cells conglomerate and lodge in the blood vessels is that once in the blood cell the parasite produces proteins that project from the surface of the cell and bind with receptors on other blood cells and on the vessel wall, and thus act like a glue. The challenge facing scientists has been to break these bonds so that the infected blood cells can be transported by the blood stream into the spleen and destroyed.

The research group, which is headed by Professor Mats Wahlgren, has now developed a substance that prevents infected blood cells from binding in this way. The substance also releases blood cells already bound. Using this method, scientists have been able to treat severe malaria in rats and primates effectively; it now remains to be seen whether these results can be replicated in people.

“There’s often a lack of ability to treat people suffering from severe malaria,” says Professor Wahlgren. “We’ve developed a substance that might be able to help these patients.”

Previously, an anti-coagulant called heparin was used in the treatment of severe malaria. Heparin was able to release the blood cells, but it was soon withdrawn when it was shown that the substance caused internal bleeding. The new substance is a development of heparin, and has the important difference of having no effect on normal blood coagulation.

The study, which is jointly financed by SIDA and Dilafor AB, is to be presented on 29 September in PLoS Pathogens.

For further information, please contact:

Professor Mats Wahlgren
Phone: +46-8-524 872 77, +46-70-556 12 46
Postdoc Anna Vogt
Phonel: +46-8-457 25 09, +46-70-320 48 73
KI press officer Katarina Sternudd
Phone: +46-8-524 838 95

Katarina Sternudd | alfa
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>