Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser probe of a brain pigment's anatomy may offer insight into Parkinson's disease

27.09.2006
In a finding that may offer clues about Parkinson's disease, a team led by Duke University researchers used a sophisticated laser system to gain evidence that a dark brown pigment that accumulates in people's brains consists of layers of two other pigments commonly found in hair.

Other scientists previously had determined via chemical analysis that the dark pigment, called neuromelanin, is composed of the two pigments: eumelanin, found in black-haired people, and pheomelanin, found in redheads. But how those pigments are arranged structurally remained unknown -- and this structuring may prove to be of critical importance, according to the researchers.

In addition, in 2005 a Duke team that included some of the same scientists involved in the current study reported using the laser system to establish that pheomelanin is chemically disposed to activate oxygen while eumelanin is not. Oxygen activation is suspected to play a role in the neurogenic cascade of events behind Parkinson's disease.

In the new report, investigators from Duke, North Carolina State University and the Institute of Biomedical Technologies in Segrate, Italy, outlined evidence that neuromelanins isolated from human brains have cores of oxygen-activating pheomelanin covered by a protective surface of eumelanin.

"This is the first piece of morphological data about how these pigments are constructed," said study leader John Simon, the George B. Geller Professor of chemistry at Duke.

The team published the findings online during the week of Sept. 25 in the journal Proceedings of the National Academy of Sciences. The research was funded by the U.S. Air Force Office of Scientific Research, through grants to the Duke University Free Electron Laser Laboratory, and by the Italian Fund for Basic Science.

The findings "should stimulate renewed interest in the roles of neuromelanin in the pathogenesis of Parkinson's disease, the second most prevalent neurodegenerative disorder," Shosuke Ito, a chemist at Japan's Fujita Health University School of Health Sciences, wrote in a companion commentary published in the journal.

According to the team's report, whose first author is Simon's graduate student, William Bush, neuromelanin granules begin appearing in human brains between ages 3 and 5, and their concentrations increase steadily thereafter.

However, neuromelanin levels drop precipitously in the brains of Parkinson's patients, who also experience a death of brain cells that are darkly pigmented and an increase in brain tissue concentrations of the metal iron.

Brain cells that produce dopamine, a key neurotransmitter disrupted in Parkinson's disease, experience high levels of oxidation as that dopamine is made, the researchers noted.

Scientists have hypothesized that brain cells synthesize neuromelanin to serve as a defense mechanism against high oxidation stress, the team's report said.

Neuromelanin's layered granular structure could help protect brain cells from damage in several ways, Ito wrote in his commentary.

Having eumelanin at their surfaces would protect the granules with a pigment known to efficiently bind iron and other molecules that could otherwise play a role in oxidative damage. If the underlying core of pheomelanin were instead positioned at the surface, "the neuro-protective role of neuromelanin would not be expected," Ito added.

However, eumelanin is limited in how much iron it can take up, and other scientists have proposed that iron over-saturation at the granules' surfaces could contribute to the high levels of the metal in the brains of Parkinson's victims.

"Increased oxidative stress under such conditions could result in degradation of the eumelanic surface of neuromelanin," Ito wrote. That could expose a pheomelanin core "that is not only ineffective in iron-binding, but also behaves as a pro-oxidant itself," he added.

"Once these neuromelanin granules start getting chewed into, an environment is created that is much more pro-oxidation," Simon said. "As pigment starts to get eroded, you can imagine how oxidative stress could be increased in multiple ways."

In the study, which Ito called "sophisticated," the researchers used a special laser device that makes light with electrons that have been freed from their usual bondage to atoms. Housed in a large bay in the Duke University Free Electron Laser Laboratory, the device can be "tuned" step-by-step to produce light at a variety of different wavelengths, with each wavelength probing different energy regions in target molecules.

The team also used a device called a photoelectron emission microscope to resolve individual neuromelanin granules and distinguish between the two pigment types.

Using these devices in combination, the researchers could pinpoint the "oxidation potentials" of molecules coating the surfaces of neuromelanin granules. Oxidation potentials measure how likely given chemicals are to activate oxygen by giving up electrons. Activated oxygen can produce compounds called radicals that can stress cells.

The team found that oxidation potentials of molecules at the surfaces approximated those found in black hair pigments in the 2005 study. "That meant it was eumelanin, which is pretty antioxidant," Simon said.

The laser beams could not penetrate beneath the granules' surfaces to record oxygen potentials nearer their cores. But previous chemical analyses by other researchers had established that neuromelanin is a mixture of both red and black hair pigments. So, the new finding suggests "a structural motif, with pheomelanin at the core and eumelanin at the surface," the team reported.

"Something special is happening, where the red pigment is getting encased in the black," Simon said. "So the red, being fairly pro-oxidant, is being encased in this antioxidant pigment."

Simon's group could only deduce the probable structure of neuromelanin, rather than measure it directly, because scientists have so far been unable to synthesize the pigment from chemical building blocks in a form that duplicates the natural version, he said.

"No one knew how to test or probe these things," Simon said. "And I can't overestimate how difficult it was to get materials to test." His group worked with small amounts of autopsied brain tissues provided by a research group led by Luigi Zecca at the Italian Institute of Biomedical Technologies.

Other researchers in the study were Glenn Edwards, director of the Duke University Free Electron Laser Laboratory; Robert Nemanich and Jacob Garguilo of N.C. State; and Fabio Zucca and Alberto Albertini of the Italian Institute of Biomedical Technologies.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>