Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laser probe of a brain pigment's anatomy may offer insight into Parkinson's disease

In a finding that may offer clues about Parkinson's disease, a team led by Duke University researchers used a sophisticated laser system to gain evidence that a dark brown pigment that accumulates in people's brains consists of layers of two other pigments commonly found in hair.

Other scientists previously had determined via chemical analysis that the dark pigment, called neuromelanin, is composed of the two pigments: eumelanin, found in black-haired people, and pheomelanin, found in redheads. But how those pigments are arranged structurally remained unknown -- and this structuring may prove to be of critical importance, according to the researchers.

In addition, in 2005 a Duke team that included some of the same scientists involved in the current study reported using the laser system to establish that pheomelanin is chemically disposed to activate oxygen while eumelanin is not. Oxygen activation is suspected to play a role in the neurogenic cascade of events behind Parkinson's disease.

In the new report, investigators from Duke, North Carolina State University and the Institute of Biomedical Technologies in Segrate, Italy, outlined evidence that neuromelanins isolated from human brains have cores of oxygen-activating pheomelanin covered by a protective surface of eumelanin.

"This is the first piece of morphological data about how these pigments are constructed," said study leader John Simon, the George B. Geller Professor of chemistry at Duke.

The team published the findings online during the week of Sept. 25 in the journal Proceedings of the National Academy of Sciences. The research was funded by the U.S. Air Force Office of Scientific Research, through grants to the Duke University Free Electron Laser Laboratory, and by the Italian Fund for Basic Science.

The findings "should stimulate renewed interest in the roles of neuromelanin in the pathogenesis of Parkinson's disease, the second most prevalent neurodegenerative disorder," Shosuke Ito, a chemist at Japan's Fujita Health University School of Health Sciences, wrote in a companion commentary published in the journal.

According to the team's report, whose first author is Simon's graduate student, William Bush, neuromelanin granules begin appearing in human brains between ages 3 and 5, and their concentrations increase steadily thereafter.

However, neuromelanin levels drop precipitously in the brains of Parkinson's patients, who also experience a death of brain cells that are darkly pigmented and an increase in brain tissue concentrations of the metal iron.

Brain cells that produce dopamine, a key neurotransmitter disrupted in Parkinson's disease, experience high levels of oxidation as that dopamine is made, the researchers noted.

Scientists have hypothesized that brain cells synthesize neuromelanin to serve as a defense mechanism against high oxidation stress, the team's report said.

Neuromelanin's layered granular structure could help protect brain cells from damage in several ways, Ito wrote in his commentary.

Having eumelanin at their surfaces would protect the granules with a pigment known to efficiently bind iron and other molecules that could otherwise play a role in oxidative damage. If the underlying core of pheomelanin were instead positioned at the surface, "the neuro-protective role of neuromelanin would not be expected," Ito added.

However, eumelanin is limited in how much iron it can take up, and other scientists have proposed that iron over-saturation at the granules' surfaces could contribute to the high levels of the metal in the brains of Parkinson's victims.

"Increased oxidative stress under such conditions could result in degradation of the eumelanic surface of neuromelanin," Ito wrote. That could expose a pheomelanin core "that is not only ineffective in iron-binding, but also behaves as a pro-oxidant itself," he added.

"Once these neuromelanin granules start getting chewed into, an environment is created that is much more pro-oxidation," Simon said. "As pigment starts to get eroded, you can imagine how oxidative stress could be increased in multiple ways."

In the study, which Ito called "sophisticated," the researchers used a special laser device that makes light with electrons that have been freed from their usual bondage to atoms. Housed in a large bay in the Duke University Free Electron Laser Laboratory, the device can be "tuned" step-by-step to produce light at a variety of different wavelengths, with each wavelength probing different energy regions in target molecules.

The team also used a device called a photoelectron emission microscope to resolve individual neuromelanin granules and distinguish between the two pigment types.

Using these devices in combination, the researchers could pinpoint the "oxidation potentials" of molecules coating the surfaces of neuromelanin granules. Oxidation potentials measure how likely given chemicals are to activate oxygen by giving up electrons. Activated oxygen can produce compounds called radicals that can stress cells.

The team found that oxidation potentials of molecules at the surfaces approximated those found in black hair pigments in the 2005 study. "That meant it was eumelanin, which is pretty antioxidant," Simon said.

The laser beams could not penetrate beneath the granules' surfaces to record oxygen potentials nearer their cores. But previous chemical analyses by other researchers had established that neuromelanin is a mixture of both red and black hair pigments. So, the new finding suggests "a structural motif, with pheomelanin at the core and eumelanin at the surface," the team reported.

"Something special is happening, where the red pigment is getting encased in the black," Simon said. "So the red, being fairly pro-oxidant, is being encased in this antioxidant pigment."

Simon's group could only deduce the probable structure of neuromelanin, rather than measure it directly, because scientists have so far been unable to synthesize the pigment from chemical building blocks in a form that duplicates the natural version, he said.

"No one knew how to test or probe these things," Simon said. "And I can't overestimate how difficult it was to get materials to test." His group worked with small amounts of autopsied brain tissues provided by a research group led by Luigi Zecca at the Italian Institute of Biomedical Technologies.

Other researchers in the study were Glenn Edwards, director of the Duke University Free Electron Laser Laboratory; Robert Nemanich and Jacob Garguilo of N.C. State; and Fabio Zucca and Alberto Albertini of the Italian Institute of Biomedical Technologies.

Monte Basgall | EurekAlert!
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>