Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule helps cells plug leaks following lung injury

18.09.2006
Researchers at the University of Illinois at Chicago College of Medicine have identified a molecule that plays a critical role in the recovery of lung tissue following severe injury.

The study appeared in the Sept. 1 issue of the Journal of Clinical Investigation.

In acute lung injury -- usually resulting from infection, inflammation or surgical trauma -- cells that line the blood vessels in the lung lose their ability to form a barrier, allowing fluid to seep into the lung's air spaces and resulting in respiratory failure. Such damage is a significant cause of death in critically ill patients.

Very little is known about how the lung repairs this lining layer, called the endothelium, said You-Yang Zhao, research assistant professor of pharmacology.

"We thought it likely that the ability of cells to repair and restore the endothelium might depend on their ability to proliferate and fill in gaps in the endothelial monolayer barrier that allow leaking," said Zhao, who is lead author of the study.

Earlier studies had shown that FoxM1, a protein that controls the expression of genes, plays a critical role in cell proliferation. Working with the late Robert Costa, professor of biochemistry and molecular genetics at UIC, whose research focused on FoxM1, the researchers developed a mouse model that lacked the FoxM1 gene only in endothelial cells.

In the study, lung injury was induced in normal mice and in the gene-deleted mice. Blood vessels in the FoxM1-deficient mice continued to leak fluid, and the mice were significantly less likely to recover, resulting in a seven-times-greater mortality rate.

Although the immune response of each group was similar, there was less endothelial cell proliferation in the gene-deficient mice after the injury, suggesting that inability to fill the gaps in the barrier with new cell growth impaired the ability to recover.

Asrar Malik, professor and head of pharmacology at UIC, says the results suggest that lung injury activates a repair program, mediated by FoxM1, that encourages cell growth and restores the barrier integrity.

"This suggests future therapies for acute lung injury that target this molecule could promote endothelial regeneration and the patient's recovery," said Malik, who is senior author of the paper.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Health and Medicine:

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Injecting gene cocktail into mouse pancreas leads to humanlike tumors
06.04.2018 | University of Texas Health Science Center at San Antonio

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>