Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opening a Door into Cells: Research Shows How Ultrasound Can Deliver Therapeutic Molecules into Living Cells

06.09.2006
Researchers have shown how ultrasound energy can briefly “open a door” in the protective outer membranes of living cells to allow entry of drugs and other therapeutic molecules – and how the cells themselves can then quickly close the door. Understanding this mechanism could advance the use of ultrasound for delivering gene therapies, targeting chemotherapy and administering large-molecule drugs that cannot readily move through cell membranes.

Using five different microscopy techniques, the researchers showed that the violent collapse of bubbles – an effect caused by the ultrasound – creates enough force to open holes in the membranes of cells suspended in a liquid medium. The holes, which are closed by the cells in a matter of minutes, allow entry of therapeutic molecules as large as 50 nanometers in diameter – larger than most proteins and similar in size to the DNA used for gene therapy.

“The holes are made by mechanical interaction with the collapsing bubbles,” said Mark Prausnitz, an associate professor in the School of Chemical and Biomolecular Engineering at the Georgia Institute of Technology. “The bubbles oscillate in the ultrasound field and collapse, causing a shock wave to be released. Fluid movement associated with the resulting shock wave opens holes in the cell membranes, which allow molecules from the outside to enter. The cells then respond to the creation of the holes by mobilizing intracellular vesicles to patch the holes within minutes.”

Done by scientists at Georgia Tech and Emory University in Atlanta, the research was reported in the journal Ultrasound in Medicine and Biology (Vol. 32, No. 6). The work was supported by the National Institutes of Health (NIH) and the National Science Foundation (NSF).

Ultrasound is the same type of energy already widely used for diagnostic imaging. Drug delivery employs higher power levels and different frequencies, and bubbles may be introduced to enhance the effect.

Ultrasound drug delivery could be particularly attractive for gene therapy, which has successfully used viruses to insert genetic material into cells – but with side effects. It could also be used for more targeted delivery of chemotherapy agents.

“One of the great benefits of ultrasound is that it is noninvasive,” Prausnitz said. “You could give a chemotherapeutic drug locally or throughout the body, then focus the ultrasound only on areas where tumors exist. That would increase the cell permeability and drug uptake only in the targeted cells and avoid affecting healthy cells elsewhere.”

Researchers have only recently found that the application of ultrasound can help move drugs into cells by increasing the permeability of cell membranes. It had been hypothesized, but not definitively shown, that the ultrasound increased the permeability by opening holes in cell membranes.

Prausnitz and collaborators Robyn Schlicher, Harish Radhakrisha, Timothy Tolentino, Vladimir Zarnitsyn of Georgia Tech and Robert Apkarian (now deceased) of Emory University set out to study the phenomenon in detail using a line of prostate cancer cells. They used scanning and transmission electron microscopy of fixed cells and two types of optical microscopy of living cells to assess ultrasound effects and cell responses.

Beyond demonstrating that ultrasound punched holes in cell membranes, the researchers also studied the mechanism by which cells repair the holes. After the ultrasound exposure, they introduced into the cell medium a chemical not normally taken up by the cells. By varying when the chemical was introduced, they were able to determine that most of the cells had repaired their membranes within minutes.

Though the researchers used prostate cancer cells in the study reported in the journal, they have also studied other types of cells and believe ultrasound offers a general way to briefly create openings in many classes of cells.

Researchers face a number of challenges, including FDA approval, before ultrasound can be used to deliver drugs in humans. For example, the effects of the ultrasound were not consistent across the entire volume of cells, with only about a third affected. Researchers will also have to address safety concerns and optimize the creation of collapsing bubbles – a phenomenon known as cavitation – within bodily tissues.

“Before we can use ultrasound for therapy in the body, we will have to learn how to control the exposure,” Prausnitz noted. “If we can properly design the impact that ultrasound makes on a cell, we can generate an impact that the cell can deal with. We want just enough impact to allow transport into the cell, but not so much of an impact that the cell would be stressed beyond its ability to repair the injury.”

Researchers don’t yet know if the membrane holes cause long-term harm to the affected cells. General assays show that cells survive after resealing the membrane holes, but detailed studies of cell behavior are still needed. Evidence from other researchers suggests that cell membranes are frequently damaged and repaired inside the body – without long-term ill effects. That suggests cells may similarly tolerate ultrasound’s effects.

“One of the real challenges is going to be translating the successes that have occurred in the laboratory and in small animals into clinical success in people,” said Prausnitz. “Now that we better understand the mechanism of ultrasound’s effects, we can more effectively take advantage of it for medical therapy.”

John Toon | EurekAlert!
Further information:
http://www.gatech.edu
http://www.gtresearchnews.gatech.edu/newsrelease/ultrasound.htm

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>