Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The mind-body connection: how CNS regulates arthritis

05.09.2006
In a unique approach to inflammation research, a study by researchers at the University of California, San Diego (UCSD) School of Medicine shows that, in a model of rheumatoid arthritis, inflammation in the joints can be sensed and modulated by the central nervous system (CNS). The research suggests that the CNS can profoundly influence immune responses, and may even contribute to understanding so-called placebo effects and the role of stress in inflammatory diseases.

The central nervous system is not just a passive responder to the outside world, but is fully able to control many previously unanticipated physiologic responses, including immunity and inflammation," said Gary S. Firestein, M.D., Professor of Medicine, Chief of the Division of Rheumatology, Allergy and Immunology, and Director of UCSD's Clinical Investigation Institute, who led the study.

The UCSD research team found that blocking key signaling enzymes in the CNS of rats resulted in decreased joint inflammation and destruction. Their findings will be published in the September edition of the journal Public Library of Science (PLoS) Medicine.

"This is an entirely new approach," Firestein said. ¡§Instead of targeting enzymes at the actual site of disease, our hypothesis is that the central nervous system is a controlling influence for the body and can regulate peripheral inflammation and immune responses."

For many years, researchers have explored developing therapeutic targets by blocking the function of a signaling enzyme called p38 MAP kinase throughout the body. This enzyme regulates cytokines proteins released in response to stress that regulate inflammation in patients with arthritis. p38 is known to regulate production of a one particular cytokine called TNFĄ, and inhibitors of this cytokine are effective therapies for rheumatoid arthritis. Typically, researchers attempt to inhibit proteins in the main tissues affected by the disease, such as the joints in arthritis or the colon in inflammatory bowel disease.

UCSD's multidisciplinary research team including Linda Sorkin, Ph.D., Department of Anesthesiology and David L. Boyle, Department of Medicine thought that the CNS might play a more important role in controlling the symptoms of rheumatoid arthritis than previously believed. To test their hypothesis, the researchers studied the p38 MAP kinase signaling in rat spinal cords.

The scientists used a novel drug delivery system to administer miniscule amounts of a compound that blocks these signals only in the CNS and then determined the influence of the treatment on peripheral arthritis.

We observed that the p38 signal is turned on, or activated, in the central nervous system during peripheral inflammation," Firestein said. "If we blocked this enzyme exclusively in a highly restricted site but not throughout in the body, inflammation in the joints was significantly suppressed."

Not only were clinical signs of arthritis diminished in those rats where p38 inhibitors were administered into the spinal fluid, but damage to the joint was also markedly decreased. The same dose of the inhibitors administered systemically had no effect.

The group also explored whether TNFĄ might also play a role in this observation. Using a TNF-inhibitor that is approved for use in rheumatoid arthritis and is usually given throughout the body, the scientists showed that delivering small amounts of this agent into the central nervous system also suppressed arthritis and joint destruction in the rats. They proposed that inflammation in the joints increases TNF production in the central nervous system, which, in turn, activates spinal p38. By blocking this pathway only in the spinal cord, they observed the same benefit that was normally achieved by treating the entire body with much higher doses.

The novel mechanism could have therapeutic implications related to the design and delivery of anti-inflammatory drugs, and may be related to the way pain signals are perceived by the brain. The study also shows that the interactions between the CNS and the body are highly complex.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>