Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cortical plasticity: it's time to get excited about inhibition

25.08.2006
Brandeis research sheds new light on neural circuits

Research from Brandeis University published online this week in Nature offers new insight into how neural circuits are shaped by experience. The article provides new evidence for the mechanisms that affect the ability of the visual cortex to plastically rearrange itself following periods of visual deprivation.

"Getting our brains to wire up properly requires experience during an early critical period of development, and understanding the mechanisms of this experience-dependent plasticity is critical for understanding human development, its disorders, and for designing strategies that promote optimal cognitive development during early childhood," explained author and neuroscientist Gina Turrigiano.

Neuroscientists have long known that the brain needs proper sensory stimulation to develop correctly and that experience can induce plastical changes in the functional architecture of sensory cortices. Animals that grow up with one eye covered during a critical period of brain development lose some of their visual acuity and ability to respond to certain visual stimuli. In these experimental conditions, Turrigiano and colleagues explored the visual cortex circuit of young rats by recording electrical activity of neurons and their connections.

"We have found an important and novel mechanism involved in the loss of function of cortical circuits," said co-author neurophysiologist Arianna Maffei. "While our results directly apply to the loss of visual function secondary to sensory deprivation, they very likely represent a more general strategy for cortical networks to respond to experience."

The researchers showed that the lasting cortical shut-down induced by visual deprivation at early stages of development is the result of a massive increase of cortical inhibition. Specifically, the strength of inhibitory synaptic connections between two types of neurons in the layer receiving the input – the inhibitory fast-spiking basket cells and the excitatory star pyramidal neurons – increased 3-fold.

While it has been historically believed that regulation of excitatory synapses is most critical to the development of neuronal circuitry, and that loss of function is the result of a depression of excitation, this research demonstrates that inhibitory synapses play a critical role in proper network wiring and ultimately in preserving – or disrupting - neuronal function.

"Our data suggest a major revision of thinking about how experience works on our brains," noted Turrigiano. "Instead of targeting exclusively excitatory networks, a major locus of plasticity lies within the inhibitory networks. Our data show that inhibitory networks within the cortex are highly plastic, and that some pathological states arise through inappropriate activation of inhibitory plasticity."

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

More articles from Health and Medicine:

nachricht Indications of Psychosis Appear in Cortical Folding
26.04.2018 | Universität Basel

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>