Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth research points to protein S14 in treating breast cancer

24.08.2006
William Kinlaw, an associate professor of medicine at Dartmouth Medical School, has been working on a protein called S14 since 1990. Over the past few months, however, the news about S14 has picked up. Through a series of recently published academic studies, Kinlaw and his colleagues are ready to pronounce S14 a potential drug target in treating breast cancer.

"Over the past three years, we've learned about S14 and its role in communicating information about the nutrient and energy supply to genes required for fat metabolism in breast cancer cells," says Kinlaw, who is also affiliated with the Norris Cotton Cancer Center at Dartmouth-Hitchcock Medical Center. "With this knowledge has also come the understanding that most breast cancers have found a mechanism to turn on the S14 gene."

He explains that these tumors are 'addicted' to S14, because it is required for the activation of a group of genes that allow the cancer cells to make fat. Kinlaw and his team have found that breast cancer cells die if S14 is removed, and their analysis of human breast tumors indicates that S14 is critical for metastasis.

"This makes sense, as fat is a crucial fuel for breast cancers," he says. "We believe this is especially so during a tumor cell's attempt to journey from the breast to other parts of the body, because the normal breast tissue supplies machinery that allows tumor cells to acquire fat from the bloodstream. Our data support the hypothesis that once the cells leave this metabolically friendly breast environment, the ability to manufacture their own fat becomes a make-or-break issue."

These findings are supported by three recently published articles. First, a few months ago, Kinlaw and his team published a study in the February 1, 2006, issue of Experimental Cell Research that further explored S14's relationship in driving fat metabolism in breast cancer cells. The researchers discovered that if you inactivate this protein, the cancer cells die. Because of this, Kinlaw explains, S14 may be a new anticancer target for breast cancer patients.

Second, in the July 2006 issue of Breast Cancer Research and Treatment, Kinlaw and fellow Dartmouth researchers Bernard Cole, Peter Morganelli, Gary Schwartz, and Wendy Wells published a study that connected the amount of S14 present in a given clinical breast cancer case to the prediction, with surprising accuracy, of which tumors would recur on long-term follow up. The researchers used a special new antibody made at Norris Cotton Cancer Center in their predictions. Kinlaw says that this study revealed the potential of S14 as a new marker for prognosis in breast cancer, and experiments are now underway to validate this result. Kinlaw has also tapped into the expertise at Dartmouth's Tuck School of Business, where students formulated this idea as a model business plan for a class project for Gregg Fairbrothers, adjunct professor of business administration and the director of the Dartmouth Entrepreneurial Network.

And finally, the journal Endocrinology invited Kinlaw and colleagues to review the topic of fat metabolism in breast cancer cells. In the review, which was available online on June 29, the researchers present a new theory of breast cancer metastasis and its relationship to fat metabolism and diet that focuses on S14.

"We're now working to examine this idea rigorously in cancer-prone mice engineered to lack S14 in the mammary gland, and to find areas on the S14 protein that might be suitable for attack with a drug," says Kinlaw.

Kinlaw's work is supported by funding from the National Institutes of Health and the Department of Defense.

Sue Knapp | EurekAlert!
Further information:
http://www.Dartmouth.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>