Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth research points to protein S14 in treating breast cancer

24.08.2006
William Kinlaw, an associate professor of medicine at Dartmouth Medical School, has been working on a protein called S14 since 1990. Over the past few months, however, the news about S14 has picked up. Through a series of recently published academic studies, Kinlaw and his colleagues are ready to pronounce S14 a potential drug target in treating breast cancer.

"Over the past three years, we've learned about S14 and its role in communicating information about the nutrient and energy supply to genes required for fat metabolism in breast cancer cells," says Kinlaw, who is also affiliated with the Norris Cotton Cancer Center at Dartmouth-Hitchcock Medical Center. "With this knowledge has also come the understanding that most breast cancers have found a mechanism to turn on the S14 gene."

He explains that these tumors are 'addicted' to S14, because it is required for the activation of a group of genes that allow the cancer cells to make fat. Kinlaw and his team have found that breast cancer cells die if S14 is removed, and their analysis of human breast tumors indicates that S14 is critical for metastasis.

"This makes sense, as fat is a crucial fuel for breast cancers," he says. "We believe this is especially so during a tumor cell's attempt to journey from the breast to other parts of the body, because the normal breast tissue supplies machinery that allows tumor cells to acquire fat from the bloodstream. Our data support the hypothesis that once the cells leave this metabolically friendly breast environment, the ability to manufacture their own fat becomes a make-or-break issue."

These findings are supported by three recently published articles. First, a few months ago, Kinlaw and his team published a study in the February 1, 2006, issue of Experimental Cell Research that further explored S14's relationship in driving fat metabolism in breast cancer cells. The researchers discovered that if you inactivate this protein, the cancer cells die. Because of this, Kinlaw explains, S14 may be a new anticancer target for breast cancer patients.

Second, in the July 2006 issue of Breast Cancer Research and Treatment, Kinlaw and fellow Dartmouth researchers Bernard Cole, Peter Morganelli, Gary Schwartz, and Wendy Wells published a study that connected the amount of S14 present in a given clinical breast cancer case to the prediction, with surprising accuracy, of which tumors would recur on long-term follow up. The researchers used a special new antibody made at Norris Cotton Cancer Center in their predictions. Kinlaw says that this study revealed the potential of S14 as a new marker for prognosis in breast cancer, and experiments are now underway to validate this result. Kinlaw has also tapped into the expertise at Dartmouth's Tuck School of Business, where students formulated this idea as a model business plan for a class project for Gregg Fairbrothers, adjunct professor of business administration and the director of the Dartmouth Entrepreneurial Network.

And finally, the journal Endocrinology invited Kinlaw and colleagues to review the topic of fat metabolism in breast cancer cells. In the review, which was available online on June 29, the researchers present a new theory of breast cancer metastasis and its relationship to fat metabolism and diet that focuses on S14.

"We're now working to examine this idea rigorously in cancer-prone mice engineered to lack S14 in the mammary gland, and to find areas on the S14 protein that might be suitable for attack with a drug," says Kinlaw.

Kinlaw's work is supported by funding from the National Institutes of Health and the Department of Defense.

Sue Knapp | EurekAlert!
Further information:
http://www.Dartmouth.edu

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>