Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How bugs avoid getting sick after sex

18.08.2006
Scientists at the Institute of Food Research in Norwich revealed today how the promiscuous Salmonella bacterium protects itself from getting ill after acquiring foreign DNA through "sex" with other bacteria. This discovery could lead to the design of new antibiotics to fight this killer disease.

Salmonella causes food poisoning and kills around 1 million people worldwide every year; it is becoming more difficult to treat with drugs because it quickly evolves resistance to antibiotics by swapping genes with other bugs during "bacterial sex". These foreign genes help the bacterium because they make it infectious and resistant to antibiotics. Professor Jay Hinton's group at the Institute of Food Research in collaboration with Oxford Gene Technology, have discovered that a protein called H-NS switches off these incoming genes until they need to be activated - a process called gene silencing. This BBSRC-funded study, published today in the respected online journal PLoS Pathogens shows that without proper control the incoming genes make proteins that are toxic for the bacterium. Without H-NS, the bacterium has problems growing and can't function properly. H-NS allows the bacteria to evolve by determining how new pieces of DNA are used in Salmonella.

"We may have found the Achilles' Heel for Salmonella bacteria because they need this H-NS protein to acquire new skills and become infectious" says Jay Hinton, "Salmonella still kills a huge number of people. Discoveries like this will help us find new ways of attacking these dangerous bacteria; if we can inactivate H-NS, we could discover urgently-needed new antibiotics."

Hinton's team found that H-NS works by coating stretches of the foreign DNA, which can be distinguished from Salmonella DNA because it contains a higher amount of the molecules adenine and thymine (A and T). H-NS binding stops foreign genes producing protein unnecessarily. Once the bacterium has invaded a human, the effect of H-NS is blocked and the genes can be switched on.

"Gene silencing is well known in plants and animals, but has never been seen before in bacteria" Jay Hinton adds, "It looks like H-NS has helped Salmonella to evolve to infect humans over the last 10 million years."

The researchers hope that this discovery could lead to a new strategy in the fight against drug-resistant "superbugs".

Vicky Just | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>