Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic version of scorpion venom delivers radioactive iodine to malignant brain tumors

01.08.2006
A new method of delivering a dose of radioactive iodine – using a man-made version of scorpion venom as a carrier – targets deadly brain tumors called gliomas without affecting neighboring tissue or body organs. After a Phase I clinical trial conducted in 18 patients showed the approach to be safe, a larger Phase II trial is underway to assess the effectiveness of multiple doses.

Adam N. Mamelak, M.D., a neurosurgeon at Cedars-Sinai Medical Center's Maxine Dunitz Neurosurgical Institute, led the Phase I trial and is first author of an article in the August of the Journal of Clinical Oncology.

The key ingredient is TM-601, a synthetic version of a peptide, or protein particle, that naturally occurs in the venom of the Giant Yellow Israeli scorpion. TM-601 binds to glioma cells and has an unusual ability to pass through the blood-brain barrier that blocks most substances from reaching brain tissue from the bloodstream.

"We're using the TM-601 primarily as a carrier to transport radioactive iodine to glioma cells, although there are data to suggest that it may also slow down the growth of tumor cells. If studies continue to confirm this, we may be able to use it in conjunction with other treatments, such as chemotherapy, because there may be a synergistic effect. In other words, TM-601's ability to impede cancer growth could allow us to reduce the dose of chemotherapy to achieve a therapeutic effect," said Mamelak, who serves as co-director of the Pituitary Center at Cedars-Sinai.

About 17,000 Americans are diagnosed with gliomas each year. The tumors are extremely aggressive and deadly, with only eight percent of patients surviving two years and three percent surviving five years from time of diagnosis. Even when surgery is performed to remove a glioma, some cancer cells invariably remain behind and proliferate.

"Despite advances in surgical technology, radiation therapy and cancer-killing drugs, length of survival has remained virtually unchanged for patients with gliomas," said Keith L. Black, M.D., director of the Maxine Dunitz Neurosurgical Institute and interim chair of Cedars-Sinai's Department of Neurosurgery. "Only in the recent past have we begun to discover some of the molecular, genetic and immunologic mechanisms that enable these deadly cancer cells to evade or defy our treatments, and we are developing innovative approaches, such as this one, that capitalize on these revelations."

Patients who consented to participate in the Phase I study first underwent tumor-removal surgery. Fourteen to 28 days later, a single, low dose of radioactive iodine (131I) attached to TM-601 was injected through a small tube into the cavity from which the tumor had been removed.

Although TM-601 had been tested in earlier laboratory and animal experiments, it had never been given to humans. Therefore, the primary objective of this study was to document that 131I-TM-601 could be administered to humans safely. In addition, the researchers sought to begin to assess the drug's anti-tumor effect and dosing standards. Six patients agreed to receive additional doses at one of three different levels (.25 mg. of TM-601, .5 mg. of TM-601, and 1 mg. of TM-601, each carrying the same amount of iodine).

"In this first human trial, treatment of patients with recurrent high-grade glioma with a single intracavitary dose of 131I-TM-601 was well tolerated to the maximum dose …. Very few adverse side effects occurred during the initial 22-day observation period, suggesting the dosing level of peptide used in this study is safe and well-tolerated in humans," the article states.

While median length of survival for all patients was 27 weeks, two patients, women in their early 40s, had a "complete radiographic response," meaning there was no evidence of residual tumor according to magnetic resonance imaging scans. The patients were still alive beyond 33 and 35 months after surgery, despite the low dose of TM-601 and radiation levels that were below expected therapeutic levels.

Analyses also showed that most of the radioactivity delivered by the drug left the region within 24 hours of administration. That which lingered was "tightly localized to the tumor cavity and surrounding regions, suggesting discrete binding to the tumor." The drug was eliminated primarily through the urine, with radiation doses to the thyroid and other vital organs remaining extremely low and harmless.

Mamelak said TM-601 binds to tumors other than gliomas, and this therapy will be studied in a variety of tumor types. He conducted this study with colleagues from City of Hope Cancer Center in Duarte, the University of Alabama at Birmingham, St. Louis University in Missouri, and TransMolecular, Inc., of Birmingham. TransMolecular also provided funding for the study.

Sandy Van | EurekAlert!
Further information:
http://www.csmc.edu/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>